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A SIMPLE RANGE CHARACTERIZATION FOR SPHERICAL MEAN

TRANSFORM IN ODD DIMENSIONS AND ITS APPLICATIONS

DIVYANSH AGRAWAL∗, GAIK AMBARTSOUMIAN†, VENKATESWARAN P. KRISHNAN∗, NISHA SINGHAL∗

Abstract. This article provides a novel and simple range description for the spherical mean transform
of functions supported in the unit ball of an odd dimensional Euclidean space. The new description
comprises a set of symmetry relations between the values of certain differential operators acting on the
coefficients of the spherical harmonics expansion of the function in the range of the transform. As one
application of this range characterization, we construct an explicit counterexample proving that unique
continuation type results cannot hold for the spherical mean transform in odd dimensional spaces.
Finally, as an auxiliary result of one of our proofs, we derive a remarkable cross product identity for
the spherical Bessel functions of the first and second kind, which may be of independent interest in the
theory of special functions.

1. Introduction

The spherical mean transform (SMT), sometimes also called the spherical Radon transform, maps
a function to its integrals over hyperspheres in R

n. The study of this operator has a long history
due to its relations to certain PDEs (wave equation, Euler-Poisson-Darboux equation) [19, 29, 39],
approximation theory and functional analysis [3, 6]. More recently, SMT and its inversion have been
analyzed in connection with applications in tomography (see [32] and the references therein).

The problem of determining a function from its averages over spheres is a formally over-determined
problem and is usually studied in restricted settings, e.g. the centers are fixed on a hypersurface, or
the radii are restricted [2, 9, 12, 18]. This article studies the SMT of a function supported in the unit
ball, and the centers of spheres of integration are restricted to the boundary of the unit ball. In this
setting, it is known that SMT is injective, and there are various formulas and algorithms for its inversion
[9, 10, 11, 14, 15, 16, 21, 22, 34, 36, 37, 38, 42, 47]. An interesting feature of these inversion formulas
is that they differ in odd and even dimensions and have local and non-local nature, respectively (see
Section 2.3). Recall that the solutions to the wave equation also show such features. For more details,
we refer the reader to the articles [24, 32] and the references therein.

In the context of investigating any generalized Radon transform and its inversion, it is desirable to
have a description of the range of that operator. Such descriptions are valuable in analytical arguments
dealing with various properties of these transforms. For example, the range characterization of the
classical Radon transform in 2D was used to prove the non-uniqueness of the solution of the so-called
interior problem in CT [35]. Furthermore, the range conditions (also often called data consistency
conditions) can be useful in applications, since the measured (transform) data can be noisy or have
missing parts, and the knowledge of the transform range may help with suppressing the noise or filling
in the missing data. Various range characterizations exist for the SMT [4, 5, 13, 23]. However, the range
conditions presented in the aforementioned articles are prohibitively complex to be used in constructive
proofs, e.g. when one needs to construct a function in the range of the transform with specified support
constraints. In this work we derive a new characterization of the range of the SMT in odd dimensions.1

Our range conditions are much simpler than those derived before, making them suitable for constructive
proofs. As an application of our new range description, we use it to prove that the unique continuation
property (UCP) does not hold for the SMT in odd dimensions. We also provide an alternative proof
of the last statement without employing the range characterization.

The study of unique continuation property in the context of partial differential equations has a
long and rich history [30, 41, 44]. More recently, the UCP for integral transforms has attracted a
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lot of attention. Such results are possible in integral geometry due to their connections with non-local
differential operators. Unique continuation results for the X-ray transform of functions and vector-fields
were studied in [27, 28], for tensors and for momentum transforms in [7, 26] and for d-plane transforms
in [20]. The unique continuation for d-plane transforms holds for odd d, i.e., when the surfaces of
integration have odd dimensions. Our article proves that unique continuation does not hold when the
surfaces of integration are hyperspheres in an odd dimensional Euclidean space. Whether the UCP
holds for the SMT in even dimensions remains an open question.

The rest of this article is organized as follows. In Section 1.1, we state our main results. We introduce
relevant notation and give preliminaries in Section 2. In particular, in Section 2.1 we recollect various
formulas for Bessel functions and Hankel transforms used in the paper. In Section 2.2, we formally
define the spherical mean transform and state a couple of known results about its inversion and range.
In Section 2.3, we define the unique continuation property for SMT. Some basic mathematical results
needed in the proofs are collected in Section 2.4. Section 3 is devoted to the proofs of the main
theorems. In Section 3.1 we prove the range characterization for the SMT of radial functions. As part
of the argument there, we derive an interesting and important cross product identity for Bessel functions
of the first and second kind. Section 3.2 deals with the range description of SMT in the general case.
In Section 3.3 we construct a counterexample for UCP of SMT. Section 4 presents alternative proof of
Theorems 1.1 and 1.8. Finally, Section 5 is devoted to the discussion of some questions that naturally
arise out of this article.

1.1. Main results. Let R denote the spherical mean transform (see Section 2.2 for the precise defini-
tion). Our first result gives a simple range characterization of R for radial functions.

Theorem 1.1 (Range characterization for SMT of radial functions). Let B denote the unit ball in R
n

for an odd n ≥ 3, and k := (n − 3)/2. A function g ∈ C∞
c ((0, 2)) is representable as g = Rf for a

radial function f ∈ C∞
c (B) if and only if h(t) := tn−2g(t) satisfies

[Lkh](1 − t) = [Lkh](1 + t), for all t ∈ [0, 1], (1.1)

where Lk is the linear differential operator of order k:

Lk =

k∑

l=0

(k + l)!

(k − l)! l! 2l
(1− t)k−lDk−l, D =

1

t

d

dt
, (1.2)

and [Lkh](·) denotes evaluation of the function Lkh at the given point.

Some special cases may be of particular interest which we highlight in the following remark.

Remark 1.2. In R
3, L0 is the identity operator, therefore a function g ∈ C∞

c ((0, 2)) is representable
as g = Rf for a radial function f ∈ C∞

c (B) if and only if h(t) = tg(t) satisfies

h(1− t) = h(1 + t), for all t ∈ [0, 1].

In R
5, a function g ∈ C∞

c ((0, 2)) is representable as g = Rf for a radial function f ∈ C∞
c (B) if and

only if h(t) = t3g(t) satisfies [L1h](1 − t) = [L1h](1 + t), for all t ∈ [0, 1], where

L1h (τ) =
1− τ

τ
h′(τ) + h(τ).

It is easy to notice that as the dimension n of the space grows, so does the order of the ordinary, linear,
differential operator L appearing in the symmetry relation (1.1).

Remark 1.3. The range condition can also be equivalently written as

[Lkh](t) = [Lkh](2 − t), for all t ∈ [0, 1].

In this form, the condition is true for all t ∈ [0, 2].

The range characterization for SMT of radial functions stated above gives a range characterization
for SMT of arbitrary compactly supported smooth functions in the unit ball as follows.

Let us consider the spherical harmonics expansions of f and g = Rf :

f(x) =

∞∑

m=0

dm∑

l=1

fm,l(|x|)Ym,l(
x

|x|),



RANGE CHARACTERIZATION OF SPHERICAL MEAN TRANSFORM 3

where

fm,l(r) =

∫

Sn−1

f(rθ)Y m,l(θ)dθ,

and

dm =
(2m+ n− 2)(n +m− 3)!

m!(n− 2)!
, d0 = 1.

Since f ∈ C∞
c (B), we have that fm,l ∈ C∞([0, 1)) with support strictly away from 1.

Likewise, we expand g = Rf into spherical harmonics:

g(θ, t) =
∞∑

m=0

dm∑

l=1

gm,l(t)Ym,l(θ),

with gm,l ∈ C∞
c ((0, 2)).

Theorem 1.4 (Range characterization - general case). Let B denote the unit ball in R
n for an odd

n ≥ 3, and k := (n−3)/2. A function g ∈ C∞
c (Sn−1× (0, 2)) is representable as g = Rf for f ∈ C∞

c (B)
if and only if for each (m, l),m ≥ 0, 0 ≤ l ≤ dm, hm,l(t) = tn−2gm,l(t) satisfies the following two
conditions:

• there is a function φm,l ∈ C∞
c ((0, 2)) such that

hm,l(t) = Dmφm,l(t), (1.3)

• the function φm,l(t) satisfies

[Lm+kφm,l](1− t) = [Lm+kφm,l](1 + t). (1.4)

Remark 1.5. One interesting consequence of Theorem 1.4 is that the range of SMT in a fixed odd
dimension is characterized by the range of radial functions in higher odd dimensions. More specifically,
let Rn denote the SMT in n-dimensions. Then, combining the above two results, we deduce
{
tn−2Rnf(p, t) : f(x) :=fm,l(|x|)Ym,l

(
x

|x|

)
for some fm,l ∈ C∞

c ([0, 1))

}

=

{(
1

t

d

dt

)m (
t2m+n−2R2m+nφ(t)

)
: φ ∈ C∞

c (B2m+n) is radial

}
Ym,l(p).

Remark 1.6. A condition about oddness of a differential operator applied to a function appears in [23]
(see Proposition 8 in [23]), where the authors use this result to characterize the range of the solution
map of the wave equation (see the proof of Theorem 3 there). We have verified that the characterization
in Theorem 1.1 is equivalent to [23, Proposition 8] for n = 3, 5, and we believe, with some effort, one
can verify that these are equivalent in general odd dimensions as well. In fact, Theorem 1.1 can also
be proved using [23, Theorem 3] (see Section 4).

Remark 1.7. It is well known that in the spherical geometry of data acquisition (i.e. when the centers
p of the integration spheres are restricted to the boundary of the unit ball containing the support of
the function f), one can uniquely recover f from Rf(p, t) using only half of the radial data, i.e. when
p ∈ S

n−1 and t ∈ (0, 1) or t ∈ (1, 2) (e.g. see [9, 10, 11]). In other words, the knowledge of Rf(p, t)
for t ∈ (0, 1) completely determines Rf(p, t) for t ∈ (1, 2), and vice versa. Therefore, the existence of
relations between the two halves of the data set is not surprising. The remarkable feature of relations
(1.1) and (1.4) is their simplicity.

Our next two results provide counterexamples to UCP for SMT in odd dimensions (see Section 2.3
for the precise definition).

Theorem 1.8 (Counterexample to UCP for SMT in odd dimensions - symmetric case). Let n ≥ 3 be
odd, ǫ ∈ (0, 1) and let U = Bǫ(0) := {x ∈ R

n : |x| < ǫ}. There exists a non-trivial function f ∈ C∞
c (B)

such that f vanishes in U and Rf(p, t) = 0 for all p ∈ S
n−1 and t ∈ (1− ǫ, 1 + ǫ).

Note that the set U here is taken to be a ball around the origin. One might wonder whether this is
a special case due to radial symmetry of the functions. However, this is not the case, and to disprove
the unique continuation in full generality, we also have
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Corollary 1.9 (Counterexample to UCP for SMT in odd dimensions - general case). Let n ≥ 3 be an
odd integer and U ⊂ B be an arbitrary open set. There exists a non-trivial function f ∈ C∞

c (B) such
that f |U = 0 and Rf vanishes on all spheres passing through U .

This will be proved by using the symmetric case, see Theorem 1.8.

We finish this section with the statement and a short discussion of a corollary of Theorem 3.2
formulated and proved in Section 3.1.

Corollary 1.10. Let h(t) and k be as defined in Theorem 1.1. Then, for any λ > 0:



∞∫

0

h(t) j
k+

1
2
(λt) t dt


 y

k+
1
2
(λ) =




∞∫

0

h(t) y
k+

1
2
(λt) t dt


 j

k+
1
2
(λ), (1.5)

where jα and yα are the normalized (or spherical) Bessel functions of the first and second kind, respec-
tively (see Section 2.1).

Formula (1.5) is remarkable for two reasons. First, it provides an infinite family (corresponding
to different choices of h) of “cross product” identities for the spherical Bessel functions of the first
and second kind, analogs of which we did not find in literature. Therefore, it may be valuable as a
standalone result in the context of theory of special functions. Second, it illuminates the structure of
the zeros of the Hankel transform of a function in the range of the SMT, which play an important role
in the description of the range of that transform (see [4, 5, 13, 23].)

2. Notation and Preliminaries

Let n ≥ 3 be an odd integer of the form n = 2k+3, k ≥ 0 and R
n denote the n-dimensional Euclidean

space. Let B denote the unit ball in R
n with its boundary denoted as Sn−1.

2.1. Bessel functions and Hankel transform. For α ∈ C such that Re(α) ≥ 0, the Bessel function
of the first kind of order α are defined as (see for instance [45])

Jα(x) =
(x
2

)α ∞∑

i=0

(−1)i(x2 )
2i

i!Γ(i+ α+ 1)
, for x ∈ (0,∞).

Bessel functions of order α are solutions of the second order differential equation

d2y

dx2
+

1

x

dy

dx
+

(
1− α2

x2

)
y = 0,

called Bessel differential equation.
Let us also define the normalized (or spherical) Bessel functions of the first kind. For α ∈ R such

that α > −1/2, these are given as

jα(x) = Γ(α+ 1)

(
2

x

)α

Jα(x)

= Γ(α+ 1)
∞∑

i=0

(−1)i(x2 )
2i

i!Γ(i + α+ 1)
.

We are mostly interested in the case when α is half of an odd integer. In this case, jα is also given by
Rayleigh’s formula [1]

jα(x) = −(−2)α+1/2Γ(α+ 1)√
π

(
1

x

d

dx

)α−1/2 (sinx

x

)
, when 2α ∈ {1, 3, . . . }. (2.1)

We will also need the normalized Bessel function of the second kind of half integer order, which is
defined as

yα(x) = −(−2)α+1/2Γ(α+ 1)√
π

(
1

x

d

dx

)α−1/2 (cos x
x

)
, when 2α ∈ {1, 3, . . . }. (2.2)

Remark 2.1. We caution the reader that the normalization of the Bessel functions is not standard.
Our normalization differs from the one in [1]. The Rayleigh’s formula stated above has been modified
accordingly. For a comprehensive study of Bessel functions, we refer the reader to the classical treatise
of Watson [46].
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The Hankel (also called Fourier-Bessel or Fourier-Hankel) transform of order α is defined as

Fα(g)(λ) =

∞∫

0

g(t)jα(λt)t
2α+1 dt.

Its inverse is given by

g(t) =
1

22αΓ2(α+ 1)

∞∫

0

Fα(g)(λ)jα(tλ)λ
2α+1 dλ.

2.2. Spherical mean transform. The SMT of a continuous function in R
n denotes the averages of

the function over spheres with centers varying over R
n and positive radii. A formal dimension count

gives that the SMT depends on (n+1)-variables, while the function itself depends on only n-variables.
This, and certain applications in tomography, motivate restricting the centers of spheres to (n − 1)-
dimensional hypersurfaces, which makes the problem interesting as well as challenging.

We will consider the case when the function is supported in B and the centers are fixed on S
n−1.

This can be easily generalized to balls and spheres of any radius by a simple dilation. For f ∈ C∞
c (B),

the spherical mean transform is defined as

Rf(p, t) =
1

ωn

∫

Sn−1

f(p+ tθ) dS(θ),

where ωn denotes the surface area of Sn−1 and dS denotes the surface measure on it. We caution the
reader that some authors also define the above transform with weight tn−1, in which case our results
need to be modified accordingly. Due to the support restriction on f , Rf(·, t) = 0 for t ≥ 2. Thus, we
have R : C∞

c (B) → C∞
c (Sn−1 × (0, 2)).

In the setting discussed above, the problem of inverting the SMT has been considered by many
authors, and explicit inversion formulas exist. Before stating the relevant inversion formulas, let us
point out that when f is a radial function, Rf is independent of the center of integration. This can be
seen by a simple application of the Funk-Hecke theorem, as follows:

Rf(p, t) =
1

ωn

∫

Sn−1

f(|p+ tθ|) dS(θ)

=
1

ωn

∫

Sn−1

f
(√

1 + t2 + 2t(p · θ)
)
dS(θ).

An application of the Funk-Hecke theorem now gives

Rf(p, t) =
ωn−1

ωn

1∫

−1

f
(√

1 + t2 + 2st
)
(1− s2)k ds, (2.3)

where the right-hand side is independent of p. This observation is not new and has been used to obtain
inversion procedures for the SMT. The above equation can be seen as a Volterra integral equation of
the first kind with a weakly singular kernel, which can be modified into a Volterra integral equation
of the second kind and then solved using Picard’s method of successive iterations. This procedure is
not specific to radial functions. The case of general functions can also be solved similarly by expansion
into spherical harmonics, see [10, 11, 42, 43]. Due to the rotation invariance of the SMT, the n-th term
in the spherical harmonics expansion of Rf depends only on the n-th term in the expansion of f via
a Volterra integral equation, which has a unique solution. It follows that if Rf is independent of the
centers of integration, then f is necessarily a radial function.

Let us now state an explicit inversion formula in odd dimensions which we use in our proofs.

Theorem 2.2. [22, Theorem 3] A smooth function f ∈ C∞
c (B) can be obtained from the knowledge of

its spherical mean transform as follows:

f(x) = K(n)
(
N ∗D∗∂2

t tDN f
)
(x) (2.4)

= K(n) (N ∗D∗∂tt∂tDN f) (x) (2.5)

= K(n)∆x (N ∗D∗tDN f) (x),
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where K(n) = −π
2Γ(n/2)2

, and the various operators involved are given by

(N f)(p, t) = tn−2(Rf)(p, t),

and for a function G ∈ C∞
c (Sn−1 × (0, 2)),

(DG)(p, t) =

(
1

2t

∂

∂t

)k

(G(p, t)),

(N ∗G)(x) =
1

ωn

∫

Sn−1

G(p, |p − x|)
|p − x| dS(p),

(D∗G)(p, t) = (−1)ktD
(
G(p, t)

t

)
.

Remark 2.3. The fact that f is necessarily a radial function if Rf is independent of the centers of
integration can also be seen from the inversion formula above. If Rf is independent of p, then so is
D∗∂2

t tDN , and hence N ∗(D∗∂2
t tDN )(x) depends only on |x| (see eq. (4.2)).

One of our proofs of sufficiency is based on the range characterization given in [5], where several
equivalent conditions are given.

Theorem 2.4. [5, Theorem 11] Let n > 1 be an odd integer. A function g ∈ C∞
c (Sn−1 × [0, 2]) is

representable as Rf for some f ∈ C∞
c (B) if and only if for any m, the mth order spherical harmonic

term ĝm(p, λ) of ĝ(p, λ) vanishes at non-zero zeros of the Bessel function Jm+n/2−1(λ), where

ĝ(p, λ) = Fn−2

2

(g)(p, λ)

is the Hankel transform of g of order α = (n− 2)/2, for each fixed p.

We will make extensive use of the following standard result:

Theorem 2.5 (Funk-Hecke). If
1∫

−1

|F (t)|(1 − t2)
n−3

2 dt < ∞, then

∫

Sn−1

F (〈σ, η〉) Yl(σ)dσ =

∣∣Sn−2
∣∣

C
n
2
−1

l (1)




1∫

−1

F (t)C
n
2
−1

l (t)(1− t2)
n−3

2 dt


Yl(η),

where |Sn−2| denotes the surface measure of the unit sphere in R
n−1, C

n
2
−1

l (t) are the Gegenbauer
polynomials and Yl are spherical harmonics.

2.3. Unique continuation principle for spherical mean transform. Let P denote any operator.
For any open set U , if Pu|U = 0 and u|U = 0 implies that u vanishes identically, then P is said to possess
a unique continuation property. Some examples of operators possessing UCP are fractional powers of
the Laplacian, the normal operators of the X-ray and momentum ray transforms, normal operators
of d-plane transforms (for d odd), etc. In all these examples, the inversion formulas are non-local in
nature.

Motivated by the results for X-ray and momentum ray transforms, we propose the following analog
of the UCP in the context of SMT:

Question 1 (Unique continuation for spherical mean transform). Let U ⊂ B be an arbitrary open set.
Let f ∈ C∞

c (B) be such that f vanishes on U , and the spherical mean transform of f vanishes on all
spheres intersecting U . Does f vanish identically?

A closer look at the inversion formula above reveals that in odd dimensions, the inversion formula for
SMT is local in nature, that is, the value of the function f at a point x depends only on the spherical
means of f on spheres passing through a small neighbourhood of x. This observation suggests that a
unique continuation result should not hold for R in odd dimensions. This is indeed true and is the
content of Theorems 1.8 and 1.9.
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2.4. Some auxiliary lemmas. In this subsection, we collect some basic mathematical results which
will be used in the calculations. All these results are well known and are stated for the sake of
completeness and easy reference.

Let us begin by recalling the Faà di Bruno’s formula, which is an identity relating the higher order
derivatives of composition of two functions to the derivatives of the functions. This is a generalization
of the usual chain rule to higher order derivatives (see, for instance, [31]).

Lemma 2.6 (Faà di Bruno’s formula). Let F and G be two smooth functions of a real variable. The
derivatives of the composite function F ◦G in terms of the derivatives of F and G are given as

dp

dtp
F (G(t)) =

p∑

q=1

F (q)(G(t))Bp,q(G
(1)(t), . . . , G(p−q+1)(t)),

where Bp,q are the Bell polynomials given by

Bp,q(x1, . . . , xp−q+1) =
∑ p!

j1! . . . jp−q+1!

(x1
1!

)j1 · · ·
(

xp−q+1

(p− q + 1)!

)jp−q+1

,

with the sum taken over all non-negative sequences, j1, · · · , jp−q+1 such that the following two conditions
are satisfied:

j1 + j2 + · · ·+ jp−q+1 = q,

j1 + 2j2 + · · · + (p − q + 1)jp−q+1 = p.

We will be working with the operator D defined as

D =
1

t

d

dt
.

Multiplying the standard chain rule by 1
t , we see that the D−derivative of composition of two functions

can then be re-written as
D(F (G(t))) = F ′(G(t)) ·DG(t),

where F ′ denotes the usual derivative of F . The following lemma is then an easy verification.

Lemma 2.7 (Faà di Bruno’s formula for the operator D). Let F and G be two smooth functions of
1-real variable. The D-derivatives of the composite function F ◦G are given as

DpF (G(t)) =

p∑

q=1

F (q)(G(t))Bp,q((DG)(t), . . . ,D(p−q+1)G(t)).

It can be quite difficult to work with the above formula in its full generality. However, for the case
that we have at hand, applying Faà di Bruno’s formula becomes much simpler. In our case, we have
DjG = 0 for j ≥ 3, and the formula simplifies to

Lemma 2.8 (Faà di Bruno’s formula- special case). Let F and G be two smooth functions of 1-real
variable such that DjG = 0 for j ≥ 3. The following identity holds

DpF (G(t)) =

p∑

q≥p/2

p!

(2q − p)!(p− q)!2p−q
F (q)(G(t)) (DG(t))2q−p (D2G(t)

)p−q
.

Proof. Due to the existence of only two non-trivial D derivatives of G, the Bell polynomials are subject
to the following two conditions:

j1 + j2 = q, j1 + 2j2 = p.

Solving this gives the following unique solution: j2 = p− q and j1 = 2q − p. Since j1 ≥ 0, we have the
additional requirement that q ≥ p/2. With all these considerations, we arrive at the required formula
for Dp(F (G(t))). �

Finally, let us record the expression for repeated integration by parts with the operator D.

Lemma 2.9. For two smooth functions F and G, the following identity holds:

b∫

a

∂tD
kF ·Gdt =

[
k−1∑

l=0

(−1)lDk−lF ·DlG

]b

t=a

+ (−1)k
b∫

a

∂tF ·DkGdt, (2.6)

where the sum is interpreted as empty for k = 0.
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The proof is straightforward and hence omitted.

3. Proof of main results

3.1. Range characterization for radial functions. Before we proceed to the proof of the range
characterization, let us explain the idea. When the function f possesses radial symmetry, some relation
between Rf at points 1± t is expected, as the figure below suggests. Notice that both the spheres (of

f(x) = f(|x|)

value of f is the same at all these points

circle of radius 1 + t

circle of radius 1− t

t

Figure 1. Relation between SMT of a radial function at radii (1 + t) and (1 − t) for
0 < t < 1.

radii 1± t) pass through points having the same values of f . Let us consider the case of 3−dimensions,
where the necessary condition is straightforward to obtain. For t ∈ (0, 2), we have

Rf(t) =
2π

4π

1∫

−1

f
(√

1 + t2 + 2st
)
ds.

Consider the change of variables u =
√
1 + t2 + 2st to obtain

Rf(t) =
1

2t

1+t∫

|1−t|

uf(u) du

=
1

2t

1∫

|1−t|

uf(u) du,

since f vanishes outside the unit ball and it follows that the function tRf(t) satisfies

[tRf ](1− t) = [tRf ](1 + t) for t ∈ [0, 1],

or equivalently

[tRf ](t) = [tRf ](2− t) for t ∈ [0, 1].

This relation also suggests working with tn−2Rf instead of Rf .
Let us move on to the proof of Theorem 1.1. We prove that the condition is necessary and sufficient

in the next two subsections respectively.
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3.1.1. Proof that the condition is necessary. In this subsection, we give the necessity part of the proof
of the Theorem 1.1.

In order to see what condition to expect, let us consider the case of spherical Radon transform in

5-dimensions. Let f be a smooth radial function supported in the unit ball in R
5, that is, f(x) = f̃(|x|)

for a smooth compactly supported function f̃ on [0,∞). In order to avoid proliferation of new notation,

we use the same f to denote the function of one variable associated to f . That is, we denote f̃ by f .
We have

Rf(p, t) =
1

ω5

∫

S4

f(p+ tθ)dθ. (3.1)

In (3.1) above, ω5 is the surface area of the unit sphere in R
5. Then

g(t) = Rf(p, t) =
1

ω5

∫

S4

f(|p+ tθ|)dθ

=
1

ω5

∫

S4

f(
√
1 + t2 + 2tp · θ)dθ.

Applying Funk-Hecke theorem, we get,

g(t) =
ω4

ω5

1∫

t/2

f(
√
1 + t2 − 2st)(1 − s2)ds. (3.2)

For t > 0, making the change of variable, u =
√
1 + t2 − 2st, we get,

g(t) =
ω4

tω5

1∫

|1−t|

f(u)u

(
1−

(
1 + t2 − u2

2t

)2
)
du

=
ω4

4t3ω5

1∫

|1−t|

f(u)u
(
4t2 −

(
1 + t2 − u2

)2)
du.

Let us denote

h(t) = t3g(t) and C =
ω4

4ω5
.

Then we have

h(t) = C

1∫

|1−t|

f(u)u
(
4t2 − (1 + t2 − u2)2

)
du

= C

1∫

|1−t|

f(u)u
(
(1 + t)2 − u2

)
(u2 − (t− 1)2)du.

We let 0 < t < 1. Then

h(t) = C

1∫

1−t

f(u)u
(
(1 + t)2 − u2

)
(u2 − (t− 1)2)du. (3.3)

We replace t by 2− t in the above expression. We get,

h(2 − t) = C

1∫

1−t

f(u)u((3− t)2 − u2)(u2 − (t− 1)2)du. (3.4)

Let us expand both (3.3) and (3.4). Then

h(t) = −C(t2 − 1)2
1∫

1−t

f(u)udu+ 2C(1 + t2)

1∫

1−t

f(u)u3du− C

1∫

1−t

f(u)u5du. (3.5)



10 AGRAWAL, AMBARTSOUMIAN, KRISHNAN, SINGHAL

h(2− t) = −C((3− t)(1− t))2
1∫

1−t

f(u)udu+ 2C(1 + (2− t)2)

1∫

1−t

f(u)u3du− C

1∫

1−t

f(u)u5du. (3.6)

For simplicity of notation, we will denote

α = C

1∫

1−t

f(u)udu, β = C

1∫

1−t

f(u)u3du, γ = C

1∫

1−t

f(u)u5du.

Our goal is to find a relation eliminating these unknowns. In this notation, we have

h(t) = −(t2 − 1)2α+ 2(1 + t2)β − γ. (3.7)

h(2− t) = −((3− t)(1 − t))2α+ 2(1 + (2− t)2)β − γ. (3.8)

Differentiating the above two expressions, we get,

h′(t) = −4t(t2 − 1)α + 4tβ. (3.9)

h′(2− t) = 4(t− 1)(t − 2)(t − 3)α− 4(t− 2)β. (3.10)

Note that those terms which involve the derivative of the integral add to 0. Solving (3.9) and (3.10),
we get,

α = −(t− 2)h′(t) + th′(2− t)

16t(t− 1)(t− 2)
. (3.11)

β = −(t− 2)(t − 3)h′(t) + t(t+ 1)h′(2− t)

16t(t− 2)
. (3.12)

Substituting this back into (3.7) and (3.8), we then get (eliminating γ),

h(t) + (t2 − 1)2α− 2(1 + t2)β = h(2− t) + ((3 − t)(1− t))2α− 2(1 + (2− t)2)β.

Using the expression for α and β, from (3.11) and (3.12), respectively, we have,

h(t) +
(1− t)

t
h′(t) = h(2− t) +

(1− t)

(t− 2)
h′(2− t) for all t ∈ (0, 1). (3.13)

In the notation of D operator, we then get,

h(t) + (1− t)[Dh](t) = h(2− t)− (1− t)[Dh](2 − t) for all t ∈ (0, 1). (3.14)

By continuity, we also have

h(t) + (1− t)[Dh](t) = h(2− t)− (1− t)[Dh](2− t) for all t ∈ [0, 1]. (3.15)

This can be rewritten in the final form as follows:

h(t)− h(2 − t) + (1− t) ([Dh](t) + [Dh](2 − t)) = 0 for all t ∈ [0, 1]. (3.16)

Note that due to the smoothness condition on h, the expression above is well-defined for t = 1 as well.
Our goal next is to generalize the above approach for odd dimensional spherical Radon transform

set-up. The strategy, as in this specific example, is to eliminate integral expressions involving f . We
also make the following observations:

• We work with D derivatives instead of the usual derivatives.
• In the general odd dimensional set-up, we can take up to kth order D derivatives and all such
derivatives pass through the integral. In other words, the derivative of the integral has no
contribution up to the kth order.

• Based on the calculations done for the 5D-case, we consider coefficients of D derivatives as
powers of (1 − t) multiplied by suitable constants. As in (3.16), these are subtracted when
evaluated at t and (2 − t) for even order D derivatives and added for odd order D derivatives
and set to 0 to determine the coefficients.
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We carry out this program for the general odd dimensional case now. We should mention here that
while the computations done for the 5D case serve as a motivation for our approach below, it is very
difficult to generalize it to higher dimensional cases, since the solution to the problem relies on the
explicit inversion of a matrix. Nevertheless, finding the correct combination of derivatives leads to a
positive answer as we show below. The 3D case is trivial, and the 5D computations done above can be
recast as follows: Let us start with the expression for h(t):

h(t) =
ω4

4ω5

1∫

|1−t|

f(u)u
(
4t2 − (1 + t2 − u2)2

)
du

=
ω4

4ω5

1∫

|1−t|

f(u)u
(
2(u2 + 1)t2 − t4 − (1− u2)2

)
du.

Let
P (t, u) = 2(u2 + 1)t2 − t4 − (1− u2)2.

It is a straightforward exercise to check that

(P (t, u)− P (2− t, u)) + (1− t) ([DP ](t, u) + [DP ](2− t, u)) ≡ 0.

This then gives that

(h(t)− h(2− t)) + (1− t) ([Dh](t) + [Dh](2 − t)) ≡ 0.

This is exactly what we derived earlier using a slightly different approach. Nevertheless, this serves as
a motivation for what follows.

Proof of necessity of Theorem 1.1. Let n be of the form n = 2k + 3 with k ≥ 0. Let f ∈ C∞
c (B) in n

dimensions be a function depending only on the distance from the origin. Then f can be written as

f(x) = f̃(|x|), for some f̃ : [0,∞) → R.

We have that f̃ ∈ C∞([0,∞)) and all odd order derivatives of f̃ vanish at the origin. As before, we do

not distinguish between f and f̃ . The spherical Radon transform of f is

Rf(p, t) =
1

ωn

∫

Sn−1

f(|p+ tθ|)dS(θ)

=
1

ωn

∫

Sn−1

f(
√

1 + t2 + 2tp · θ)dS(θ)

=
ωn−1

ωn

1∫

t/2

f(
√
1 + t2 − 2ts)(1 − s2)

n−3

2 ds.

The last equality follows from Funk-Hecke theorem combined with the fact that the support of f is in
the unit ball which forces t

2 ≤ −p · θ ≤ 1. Next employing the change of variable,

1 + t2 − 2ts = u2,

we have

h(t) := tn−2Rf(p, t) =
ωn−1

4kωn

1∫

|1−t|

uf(u)
(
4t2 − (1 + t2 − u2)2

)k
du

=
ωn−1

4kωn

1∫

|1−t|

uf(u)
(
2(u2 + 1)t2 − t4 − (1− u2)2

)k
du

The integral kernel for h(t) is a polynomial in t, u variables. In order to derive a necessary condition
for a function h(t) ∈ C∞

c ((0, 2)) to be in the range of the spherical Radon transform, a reasonable
approach would be differentiate h several times and derive a system of equations eliminating integrals
with integrand of the form f(u)um for certain positive integers m. Before we proceed, we make the
following remark. We are interested in taking k derivatives of h(t). In fact, h is infinitely differentiable
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in t. This is clear for t 6= 1. However, for t = 1, we can argue as follows. We have that h(t) (involving
the spherical Radon transform of a smooth function) is smooth in the t variable and for t 6= 1, the
derivatives of h(t) can be computed by chain rule. Hence the derivatives of h(t) at t = 1 can be
evaluated by taking the limit as t → 1 of the corresponding derivatives evaluated at t 6= 1. The same
remark applies for higher order D derivatives instead of ordinary derivatives. With this remark in
mind, we will not distinguish between t = 1 and t 6= 1. With

Q(t, u) = 2(u2 + 1)t2 − t4 − (1− u2)2,

we consider P (t, u) = (Q(t, u))k, and we are interested in taking D derivatives up to order k of h(t).
Note that up to order k, the derivatives are only evaluated on P (t, u), since Q(t, 1 − t) = 0.

As a first step, we find explicit expression for higher order D derivatives of h(t). We use a special
case of Faà di Bruno’s formula, Lemma 2.8: Let’s consider

P (t) = tk and Q(t, u) = 2(u2 + 1)t2 − t4 − (1− u2)2.

In the set-up that we have, we take higher order D derivatives of Q and we observe that DpQ(t, u)) = 0
for p ≥ 3. Furthermore,

DQ(t, u) = 4(u2 + 1− t2) = 4

(
Q(2− t, u)−Q(t, u)

8(1 − t)
+ 2(1− t)

)
,

and
D2Q(t, u) = −8.

With all these considerations, we arrive at the following formula for DpP (t, u):

DpP (t, u) =

p∑

q≥p/2

k!

(k − q)!
(Q(t, u))k−q p!

(2q − p)!(p− q)!2p−q

(
Q(2− t, u)−Q(t, u)

2(1− t)
+ 8(1 − t)

)2q−p

(−8)p−q.

Let us write this as

DpP (t, u) =

p∑

q≥p/2

K(p, q)

(1− t)2q−p
Q(t, u)k−q(Q(2 − t, u)−Q(t, u) + 16(1 − t)2)2q−p, (3.17)

with

K(p, q) =
k!p!(−4)p−q

(k − q)!(2q − p)!(p− q)!22q−p
.

Since we are only interested in derivatives in the t variable, we are going to suppress the dependence
of P,Q and their derivatives on u, and simply write P (t), Q(t), etc. We also recall our convention that
[DpP ](·) denotes evaluation of the function DpP at the given point. Based on the necessary condition
derived for the 5D case, keeping in mind odd or even order D derivatives, let us consider

(1− t)p
(
[DpP ](t) + (−1)p+1[DpP ](2− t)

)
. (3.18)

Let us expand [DpP ](t) by binomial theorem. We get,

[DpP ](t) =

p∑

q≥p/2

K(p, q)

(1− t)2q−p
Q(t)k−q

2q−p∑

r=0

(
2q − p

r

)
(Q(2− t)−Q(t))2q−p−r16r(1− t)2r

=

p∑

q≥p/2

2q−p∑

r=0

16rK(p, q)

(1− t)2q−p
(1− t)2r

(
2q − p

r

)
Q(t)k−q(Q(2− t)−Q(t))2q−p−r.

Hence

[DpP ](2 − t)=

p∑

q≥p/2

2q−p∑

r=0

(−1)2q−p−r16rK(p, q)

(−1)2q−p(1− t)2q−p
(1− t)2r

(
2q − p

r

)
Q(2− t)k−q(Q(2− t)−Q(t))2q−p−r.

Therefore

(1− t)p
(
[DpP ](t) + (−1)p+1[DpP ](2− t)

)
=

p∑

q≥p/2

2q−p∑

r=0

K(p, q)16r(1− t)2p−2q+2r

(
2q − p

r

)
×

(Q(2− t)−Q(t))2q−p−r

{
Q(t)k−q + (−1)p−r+1Q(2− t)k−q

}
.
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We want to find coefficients {C(k, p)} for 0 ≤ p ≤ k such that

k∑

p=0

p∑

q≥p/2

2q−p∑

r=0

C(k, p)K(p, q)(−1)2q−p−r16r(1− t)2p−2q+2r

(
2q − p

r

)
×

(Q(t)−Q(2− t))2q−p−r

{
Q(t)k−q + (−1)p−r+1Q(2− t)k−q

}
= 0.

Simplifying the constants in the equality above, we arrive at

k∑

p=0

p∑

q≥p/2

2q−p∑

r=0

C(k, p)
k!p!(−1)q−r23p−4q+4r

(k − q)!(p− q)!r!(2q − p− r)!
(1− t)2(p−q+r)

× (Q(t)−Q(2− t))2q−p−r
{
Q(t)k−q + (−1)p−r+1Q(2− t)k−q

}
= 0.

(3.19)

Our goal is to find constants C(k, p) such that (3.19) is valid. Let us fix a power of (1− t)2 of the form

(1− t)2(k−l). Our strategy for determining the coefficients is to set sum of the terms corresponding to

this fixed power (1 − t)2(k−l) = 0. Let us assume l is odd; the proof for the even case is similar. The
maximum possible choices of triples (p, q, r) we have to consider are:

(1) (k, k − l, k − 2l), (k, k − l + 1, k − 2l + 1), · · · , (k, k, k − l)
(2) (k − 1, k − l, k − 2l + 1), (k − 1, k − l + 1, k − 2l + 2), · · · , (k − 1, k − 1, k − l)

...
(3) (k − l, k − l, k − l).

The maximum number of terms above is (l+1)(l+2)
2 .

We prove our result by induction. Let us start by considering the highest power of (1− t) in (3.19).
We claim that a term of the form (1 − t)2k does not appear in the expansion above. This can be

seen as follows: To get the term, (1− t)2(p−q+r) = (1− t)2k, we must have p− q+ r = k. If p < k, then
we must have q < r. But we have 0 ≤ r ≤ 2q − p < 2r − p. This then implies that r < 2r − p, which
then gives that r > p, but this impossible. Hence p = k. This then gives r = q, which then gives that
p ≤ q. But q ≤ p always and hence q = p = k. This forces r = k. Due to the presence of (−1)p−r+1 in
the term above, we get that (1− t)2k term does not appear in the expansion above.

Next we show that a term involving (1−t)2k−2 appears exactly twice in the term involving C(k, k) and
once in the term involving C(k, k−1). First, consider p = k. Then we have to consider p−q+r = k−1,
and since p = k, we have q−r = 1, which then implies that k−1 ≤ q. Hence the two choices of q that are
possible are q = k−1 and q = k. If q = k−1, then r = k−2, and if q = k, then r = k−1. If we consider
p = k − 1, then exactly the same argument as in the previous paragraph leads to r = q = p = k − 1.
Hence only one choice is possible. Next let p = k − 2. We then have r− q = 1, and following the same
arguments as above, we get that q ≥ k−1, which is impossible since q ≤ p = k−2. A similar argument
follows for all p < k − 2. Hence we have established that there are exactly three terms.

Summarizing the content of the above paragraph, there are exactly 3 terms in the above expansion
involving (1− t)2k−2. They correspond to the following triples: (p, q, r) = (k, k − 1, k − 2), (k, k, k − 1)
and (k− 1, k − 1, k − 1). We have to be careful with terms involving the case when q = k, since in this
case, Q(t)k−q + (−1)p−r+1Q(2− t)k−q is either 0 or 2. Note that this appears below when dealing with
K(k, k) term. Setting the term involving (1− t)2k−2 to be 0, we get
{
C(k, k)

{
K(k, k − 1)8k−2 −K(k, k)8k−1k

}
+ C(k, k − 1)K(k − 1, k − 1)8k−1

}
(Q(t)−Q(2− t)) = 0.

By setting the terms within the outer parantheses to be 0 and using the values of K(k, k − 1),K(k, k)
and K(k − 1, k − 1), we then get the following:

−C(k, k)

{
4k!28k−2

(k − 2)!
+ k!8k−1k

}
+ C(k, k − 1)k!8k−1 = 0. (3.20)

Setting C(k, k) = 1, we find that C(k, k − 1) = k(k + 1)/2. Notice that the values of {C(k, p)} are
unique up to a normalizing constant. We choose the normalization so that C(k, k) = 1.

Let us assume by induction that C(k, k− s) = (k+s)!
(k−s)!2ss! for all 0 ≤ s ≤ l− 1. Note that C(k, k) = 1.

Our goal is to determine C(k, k−l). For ease of notation, from now on, we let A = Q(t) and B = Q(2−t).
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The terms corresponding to the triples from (1) above are:

−C(k, k)(k!)223k−4l
l∑

s=0

(A−B)s
(
Al−s + (−1)2l+1−sBl−s

)

((l − s)!)2(k − 2l + s)!s!
.

The terms corresponding to the triples (p, q, r) from (2) above are:

C(k, k − 1)k!(k − 1)!23k−4l+1
l−1∑

s=0

(A−B)s(Al−s + (−1)2l−s−1Bl−s)

(l − s)!(l − s− 1)!(k − 2l + 1 + s)!s!
.

The terms corresponding to triples (p, q, r) with p = k − 2 are:

−C(k, k − 2)k!(k − 2)!23k−4l+2
l−2∑

s=0

(A−B)s(Al−s + (−1)2l−s−3Bl−s)

(l − s)!(l − s− 2)!(k − 2l + 2 + s)!s!
.

Continuing in this fashion and summing up all the terms corresponding to (1 − t)2(k−l) and setting it
to 0, we have

k!

l∑

m=0

(−1)l−mC(k, k −m)(k −m)!23k−4l+m
l−m∑

s=0

(A−B)s(Al−s − (−1)2l−sBl−s)

(l − s)!(l − s−m)!(k − 2l + s+m)!s!
= 0.

We ignore k! and 23k−4l in the above expression from now on. Interchanging the order of summation,
we get,

l∑

s=0

l−s∑

m=0

(−1)l−mC(k, k −m)(k −m)!2m
(A−B)s(Al−s − (−1)sBl−s)

(l − s)!(l − s−m)!(k − 2l + s+m)!s!
= 0. (3.21)

Let us split (3.21) as

l−1∑

s=1

l−s∑

m=1

(−1)l−mC(k, k −m)(k −m)!2m
(A−B)s(Al−s − (−1)sBl−s)

(l − s)!(l − s−m)!(k − 2l + s+m)!s!

+

l−1∑

m=1

(−1)l−mC(k, k −m)(k −m)!2m(Al −Bl)

l!(l −m)!(k − 2l +m)!
− 2(A−B)l

(
k

l

)

−
l−1∑

s=1

k!(A−B)s(Al−s − (−1)sBl−s)

((l − s)!)2(k − 2l + s)!s!
+

C(k, k − l)2l(Al −Bl)

l!
− k!(Al −Bl)

(l!)2(k − 2l)!
= 0.

Using the fact that C(k, k −m) = (k+m)!
(k−m)!2mm! for 0 ≤ m < l, we get,

l−1∑

s=1

l−s∑

m=1

(−1)l−m (k +m)!(A −B)s(Al−s − (−1)sBl−s)

m!(l − s)!(l − s−m)!(k − 2l + s+m)!s!
−

l−1∑

m=1

(−1)m
(k +m)!(Al −Bl)

l!m!(l −m)!(k − 2l +m)!

− 2(A−B)l
(
k

l

)
−

l−1∑

s=1

k!(A−B)s(Al−s − (−1)sBl−s)

((l − s)!)2(k − 2l + s)!s!
+

C(k, k − l)2l(Al −Bl)

l!
− k!(Al −Bl)

(l!)2(k − 2l)!
= 0.

We can write this as

−
l−1∑

s=1

(2l − s)!(A−B)s(Al−s − (−1)sBl−s)

((l − s)!)2s!

l−s∑

m=1

(−1)m
(
k +m

2l − s

)(
l − s

m

)

− (2l)!(Al −Bl)

(l!)2

l−1∑

m=1

(−1)m
(
k +m

2l

)(
l

m

)
− 2(A−B)l

(
k

l

)

−
l−1∑

s=1

(
k

2l − s

)(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)

+
C(k, k − l)2l(Al −Bl)

l!
− k!(Al −Bl)

(l!)2(k − 2l)!
= 0.

(3.22)
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Our next step is to simplify the first summand in (3.22) above, which we denote by β:

β = −
l−1∑

s=1

(2l − s)!(A−B)s(Al−s − (−1)sBl−s)

((l − s)!)2s!

l−s∑

m=1

(−1)m
(
k +m

2l − s

)(
l − s

m

)
.

We first simplify the second summand in β: We write using Vandermonde identity [25]:
(
k +m

2l − s

)
=

m∑

j=1

(
k

2l − s− j

)(
m

j

)
+

(
k

2l − s

)
,

the second term on the right being the term corresponding to the index j = 0 from the first sum. Using
this, we have,

l−s∑

m=1

(−1)m
(
k +m

2l − s

)(
l − s

m

)
=

l−s∑

m=1

(−1)m

{
m∑

j=1

(
k

2l − s− j

)(
m

j

)
+

(
k

2l − s

)}(
l − s

m

)

=

l−s∑

m=1

(−1)m

{
m∑

j=1

(
k

2l − s− j

)(
m

j

)(
l − s

m

)
+

(
k

2l − s

)(
l − s

m

)}

=

l−s∑

m=1

(−1)m

{
m∑

j=1

(
k

2l − s− j

)(
l − s

j

)(
l − s− j

l − s−m

)
+

(
k

2l − s

)(
l − s

m

)}
.

In the last equality, we have used the standard fact:(
a

b

)(
b

c

)
=

(
a

c

)(
a− c

b− c

)
=

(
a

c

)(
a− c

a− b

)
.

Let us interchange the order of summation. We then get,

l−s∑

m=1

(−1)m
(
k +m

2l − s

)(
l − s

m

)
=

l−s∑

j=1

l−s∑

m=j

(−1)m
(

k

2l − s− j

)(
l − s

j

)(
l − s− j

l − s−m

)
(3.23)

+

l−s∑

m=1

(−1)m
(

k

2l − s

)(
l − s

m

)
. (3.24)

Note that
l−s∑

m=0

(−1)m
(
l − s

m

)
= 0.

Hence (3.24) simplifies to
l−s∑

m=1

(−1)m
(

k

2l − s

)(
l − s

m

)
= −

(
k

2l − s

)
.

Next let us consider the first summand on the right in (3.23). We write

l−s∑

j=1

l−s∑

m=j

(−1)m
(

k

2l − s− j

)(
l − s

j

)(
l − s− j

l − s−m

)

=

l−s−1∑

j=1

l−s∑

m=j

(−1)m
(

k

2l − s− j

)(
l − s

j

)(
l − s− j

l − s−m

)
+ (−1)l−s

(
k

l

)

=

l−s−1∑

j=1

(
k

2l − s− j

)(
l − s

j

) l−s∑

m=j

(−1)m
(
l − s− j

l − s−m

)
+ (−1)l−s

(
k

l

)
.

We have that
l−s∑

m=j

(−1)m
(
l − s− j

l − s−m

)
= 0.

Hence
l−s∑

j=1

l−s∑

m=j

(−1)m
(

k

2l − s− j

)(
l − s

j

)(
l − s− j

l − s−m

)
= (−1)l−s

(
k

l

)
.
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Putting this together, we get

l−s∑

m=1

(−1)m
(
k +m

2l − s

)(
l − s

m

)
= (−1)l−s

(
k

l

)
−
(

k

2l − s

)
. (3.25)

Substituting (3.25) into β, we have

β = −
(
k

l

) l−1∑

s=1

(−1)l−s (2l − s)!(A−B)s(Al−s − (−1)sBl−s)

((l − s)!)2s!

+
l−1∑

s=1

(
k

2l − s

)
(2l − s)!(A−B)s(Al−s − (−1)sBl−s)

((l − s)!)2s!

We write

(2l − s)!

((l − s)!)2s!
=

(
2l − s

l − s

)(
l

s

)
=

(
2l − s

l

)(
l

s

)
.

With this, we have

β = −
(
k

l

) l−1∑

s=1

(−1)l−s

(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)

+

l−1∑

s=1

(
k

2l − s

)(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)

=

(
k

l

) l−1∑

s=1

(−1)s
(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)

+

(
k

l

) l−1∑

s=1

(
k − l

l − s

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s).

Note that in the second line from bottom above, we have used the fact that l is odd. Let us write

(
k

l

) l−1∑

s=1

(−1)s
(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)

=

(
k

l

){ l∑

s=0

(−1)s
(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)− (2l)!

(l!)2
(Al −Bl) + 2(A −B)l

}
.

Hence

β =

(
k

l

){ l∑

s=0

(−1)s
(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)− (2l)!

(l!)2
(Al −Bl) + 2(A−B)l

}

+

(
k

l

) l−1∑

s=1

(
k − l

l − s

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s).

Lemma 3.1. We have that for any A and B and for any l ≥ 0,

l∑

s=0

(−1)s
(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s) = 0.

Proof. We first split the left hand side as follows:

l∑

s=0

(−1)s
(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s) =

l∑

s=0

(
2l − s

l

)(
l

s

)
(B −A)sAl−s

−
l∑

s=0

(
2l − s

l

)(
l

s

)
(A−B)sBl−s.
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Now we write (
2l − s

l

)
=

1

2πi

∫

|z|=ε

(1 + z)2l−s

zl+1
dz,

and hence

l∑

s=0

(
2l − s

l

)(
l

s

)
(B −A)sAl−s =

1

2πi

∫

|z|=ε

l∑

s=0

(
l

s

)
(B −A)sAl−s (1 + z)2l−s

zl+1
dz

=
1

2πi

∫

|z|=ε

l∑

s=0

(
l

s

)(
B −A

1 + z

)s

Al−s (1 + z)2l

zl+1
dz

=
1

2πi

∫

|z|=ε

(
A+

B −A

1 + z

)l (1 + z)2l

zl+1
dz

=
1

2πi

∫

|z|=ε

((B +Az)(1 + z))l

zl+1
dz.

Similarly,

l∑

s=0

(
2l − s

l

)(
l

s

)
(A−B)sBl−s =

1

2πi

∫

|z|=ε

((A+Bz)(1 + z))l

zl+1
dz.

We would like to show then that

1

2πi

∫

|z|=ε

((B +Az)(1 + z))l

zl+1
dz − 1

2πi

∫

|z|=ε

((A+Bz)(1 + z))l

zl+1
dz = 0.

Expanding (B +Az)l(1 + z)l using binomial theorem, we get,

(B +Az)l(1 + z)l =

l∑

u,v=0

(
l

u

)(
l

v

)
BuAl−uzl−uzv .

Then

(B +Az)l(1 + z)l

zl+1
=

l∑
u,v=0

( l
u

)( l
v

)
BuAl−uzv−u

z
.

Hence

1

2πi

∫

|z|=ε

((B +Az)(1 + z))l

zl+1
dz =

l∑

u=0

(
l

u

)2

BuAl−u,

by Cauchy’s theorem combined with the fact that for any negative power of z that is not −1, the
integral vanishes, since z−p has a primitive in a neighborhood of |z| = ε for p 6= 1. Similarly,

(A+Bz)l(1 + z)l

zl+1
=

l∑
u,v=0

( l
u

)( l
v

)
AuBl−uzv−u

z
.

Exactly the same argument gives,

1

2πi

∫

|z|=ε

(A+Bz)l(1 + z)l

zl+1
dz =

l∑

u=0

(
l

u

)2

AuBl−u.

Since
( l
u

)
=
( l
l−u

)
, these two sums are the same. This concludes the proof of the lemma. �



18 AGRAWAL, AMBARTSOUMIAN, KRISHNAN, SINGHAL

Going back to the proof of the result, we have now

β =

(
k

l

){
− (2l)!

(l!)2
(Al −Bl) + 2(A−B)l

}
+

(
k

l

) l−1∑

s=1

(
k − l

l − s

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s).

Substituting this into (3.22), we then get,

0 =

(
k

l

){
− (2l)!

(l!)2
(Al −Bl) + 2(A−B)l

}
+

(
k

l

) l−1∑

s=1

(
k − l

l − s

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)

− (2l)!(Al −Bl)

(l!)2

l−1∑

m=1

(−1)m
(
k +m

2l

)(
l

m

)
− 2(A−B)l

(
k

l

)

−
l−1∑

s=1

(
k

2l − s

)(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s) +

C(k, k − l)2l(Al −Bl)

l!
− k!(Al −Bl)

(l!)2(k − 2l)!
.

(3.26)
Finally, let us simplify the third summand on the right:

l−1∑

m=1

(−1)m
(
k +m

2l

)(
l

m

)
.

We have, again using Vandermonde identity,

l−1∑

m=1

(−1)m
(
k +m

2l

)(
l

m

)
=

l−1∑

m=1

(−1)m
m∑

j=1

(
k

2l − j

)(
m

j

)(
l

m

)
+

l−1∑

m=1

(−1)m
(
k

2l

)(
l

m

)
.

We note that in the second sum above, there are at least two terms in the expansion since m starts
from 1 and l is odd. Hence the second summand on the right is 0. Then

l−1∑

m=1

(−1)m
(
k +m

2l

)(
l

m

)
=

l−1∑

m=1

(−1)m
m∑

j=1

(
k

2l − j

)(
l

j

)(
l − j

m− j

)
.

Interchanging the order of summation, we get,

l−1∑

m=1

(−1)m
(
k +m

2l

)(
l

m

)
=

l−1∑

j=1

(
k

2l − j

)(
l

j

) l−1∑

m=j

(−1)m
(

l − j

m− j

)

=
l−1∑

j=1

(
k

2l − j

)(
l

j

)
.

Note that the second line follows due to the fact that

0 =

l∑

m=j

(−1)m
(

l − j

m− j

)

=

l−1∑

m=j

(−1)m
(

l − j

m− j

)
+ (−1)l.

Since l is assumed to be odd, we get,

l−1∑

m=j

(−1)m
(

l − j

m− j

)
= 1.

We have,
∑

k

(
p

k

)(
q − j

q − k

)
=

(
p+ q − j

q

)
.

Using this formula, we get,

l−1∑

m=1

(−1)m
(
k +m

2l

)(
l

m

)
=

(
k + l

2l

)
−
(
k

2l

)
−
(
k

l

)
.
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Using this in (3.26), we have

0 =

(
k

l

){
− (2l)!

(l!)2
(Al −Bl) + 2(A−B)l

}
+

(
k

l

) l−1∑

s=1

(
k − l

l − s

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)

− (2l)!(Al −Bl)

(l!)2

{(
k + l

2l

)
−
(
k

2l

)
−
(
k

l

)}

− 2(A−B)l
(
k

l

)
−

l−1∑

s=1

(
k

2l − s

)(
2l − s

l

)(
l

s

)
(A−B)s(Al−s − (−1)sBl−s)

+
C(k, k − l)2l(Al −Bl)

l!
− k!(Al −Bl)

(l!)2(k − 2l)!
.

(3.27)
The second and fifth terms on the right in (3.27) cancel. Further cancelling out other common terms
in (3.27), we arrive at

C(k, k − l) =
(k + l)!

(k − l)!2ll!
.

This completes the induction step. A similar argument can be employed for the case of l even and for
this reason we will skip the proof.

Going back to (3.19), we have found the coefficients C(k, p) such that this equation is 0. In other
words, we have obtained the following:

k∑

p=0

C(k, p)(1− t)p
(
[DpP ](t) + (−1)p+1[DpP ](2− t)

)
= 0,

where

C(k, p) =
(2k − p)!

p!2k−p(k − p)!
.

Since, as already mentioned above, the D derivatives up to order k of h(t) are applied only to P (t, u),
we have obtained the following necessary condition for a function g ∈ C∞

c ((0, 2)) to be in the range of
a smooth radial function supported in the unit ball in R

n, where n = 2k + 3: Letting h(t) = tn−2g(t),
we have for all t ∈ [0, 1]

{
k∑

p=0

C(k, p)(1 − ·)p[Dph(·)]
}
(t) =

{
k∑

p=0

C(k, p)(1− ·)p[Dph(·)]
}
(2− t). (3.28)

�

3.1.2. Proof of sufficiency in Theorem 1.1. In this subsection, we give the proof of sufficiency of The-
orem 1.1. We start with a result about special functions that could be of independent interest.

Theorem 3.2. Let h(t) ∈ C∞
c ((0, 2)) satisfy the following evenness condition:

{
k∑

p=0

C(k, p)(1− ·)p[Dph](·)
}
(1− t) =

{
k∑

p=0

C(k, p)(1 − ·)p[Dph](·)
}
(1 + t) for all t ∈ [0, 1]. (3.29)

Then h(t) satisfies the following identity: For λ > 0:



∞∫

0

j
k+

1
2
(λt)th(t)dt


 y

k+
1
2
(λ) =




∞∫

0

y
k+

1
2
(λt)th(t)dt


 j

k+
1
2
(λ). (3.30)

Proof. We define

H(t) =

k∑

p=0

C(k, p)(1− t)p[Dph](t).

We observe the following properties of H(t).

(1) H(t) = H(2− t) for 0 ≤ t ≤ 1,
(2) H(t) = 0 for t > 2.
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We claim that the following integral

Ik =

∞∫

0

k∑

p=0

C(k, p)(1 − t)p[Dph](t)jk+ 1

2

(λ(t− 1))(t − 1)dt = 0. (3.31)

To see this, first of all, we observe that due to the support condition on h, H(t) has non-trivial support
only in (0, 2). Then

Ik =

2∫

0

k∑

p=0

C(k, p)(1 − t)p[Dph](t)j
k+

1
2
(λ(t− 1))(t − 1)dt

=

1∫

0

k∑

p=0

C(k, p)(1 − t)p[Dph](t)j
k+

1
2
(λ(t− 1))(t − 1)dt

+

2∫

1

k∑

p=0

C(k, p)(1 − t)p[Dph](t)j
k+

1
2
(λ(t− 1))(t − 1)dt.

Substituting t by 2− t in the second integral, noting that j
k+

1
2
(x) is an even function in x, and using

(3.29), we have

Ik =

1∫

0

k∑

p=0

C(k, p)(1 − t)p[Dph](t)j
k+

1
2
(λ(t− 1))(t − 1)dt

−
1∫

0

k∑

p=0

C(k, p)(1 − t)p[Dph](t)jk+ 1

2

(λ(t− 1))(t − 1)dt = 0.

Next we have

0 = Ik =

∞∫

0

k∑

p=0

C(k, p)(1 − t)p[Dph](t)jk+ 1

2

(λ(t− 1))(t− 1)dt

=

∞∫

0

k∑

p=0

C(k, p)th(t)Dp

(
(t− 1)p+1jk+ 1

2

(λ(t− 1))

t

)
dt.

Substituting t by −t, we get

Ik = −
0∫

−∞

k∑

p=0

(−1)pC(k, p)Dp

(
(t+ 1)p+1jk+ 1

2

(λ(t+ 1))

t

)
th(−t)dt.

From Theorem 3.3 below, we obtain the following equality. This is a technical result and in order not
to disturb the flow of proof, we prefer to give it at the end.

Ik = (−1)k+1

0∫

−∞

{
Dk

(
sin(λt)

t

)
y
k+

1
2
(λ) +Dk

(
cos(λt)

t

)
j
k+

1
2
(λ)

}
th(−t)dt.

From the formulas in Lemma 3.4, we see that

Dk

(
sinλ(·)
(·)

)
(−t) = Dk

(
sinλ(·)
(·)

)
(t),

Dk

(
cos λ(·)

(·)

)
(−t) = −Dk

(
cos λ(·)

(·)

)
(t).

Letting t → −t in the integral above, we have

0 = (−1)k
∞∫

0

{
Dk

(
sin(λt)

t

)
y
k+

1
2
(λ)−Dk

(
cos(λt)

t

)
j
k+

1
2
(λ)

}
th(t)dt.
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Hence 


∞∫

0

Dk

(
sin(λt)

t

)
th(t)dt


 y

k+
1
2
(λ) =




∞∫

0

Dk

(
cos(λt)

t

)
th((t)dt


 j

k+
1
2
(λ). (3.32)

The above formula (3.32) can be written in a more symmetric form as follows. For λ > 0:



∞∫

0

j
k+

1
2
(λt)th(t)dt


 y

k+
1
2
(λ) =




∞∫

0

y
k+

1
2
(λt)th(t)dt


 j

k+
1
2
(λ).

�

Theorem 3.3. Let jk+1/2(x) = Dk
(
sinx
x

)
be the spherical Bessel function of the first kind modulo

constants and recall C(k, p) = (2k−p)!
p!(k−p)!2k−p . For λ > 0 and t 6= 0,

Mk(λ) :=

k∑

p=0

C(k, p)(−1)pDp



(1 + t)p+1j

k+
1
2
(λ(1 + t))

t




= (−1)k
{
Dk

(
sin(λt)

t

)
y
k+

1
2
(λ) +Dk

(
cos(λt)

t

)
j
k+

1
2
(λ)

}
,

(3.33)

where

y
k+

1
2
(x) = Dk

(cos x
x

)
,

is the spherical Bessel function of the second kind modulo constants.

We collect a few formulas first:

Lemma 3.4. We have

Dp

(
sinx

x

)
=

p∑

l=0

C(p, l)xl

x2p+1

{
sinx

(
(−1)l + 1

2

)
(−1)p+

l
2 + cos x

(
(−1)l+1 + 1

2

)
(−1)p+

l+1

2

}
(3.34)

Dp
(cos x

x

)
=

p∑

l=0

C(p, l)xl

x2p+1

{
cosx

(
(−1)l + 1

2

)
(−1)p+

l
2 − sinx

(
(−1)l+1 + 1

2

)
(−1)p+

l+1

2

}
(3.35)

Dm

(
1

t(t+ 1)d

)
= (−1)m

m∑

r=0

C(m, r)
(d+r−1

r

)
r!

t2m+1−r(t+ 1)d+r
, with the convention that

(
n

0

)
= 1 for n ∈ Z.

(3.36)

The proofs of these formulas follow in a straightforward manner by induction and will be skipped.

Proof. We begin the proof of Theorem 3.3. We can assume in what follows that t 6= −1. The result for
the case t = −1 will follow from continuity.

We have

(−1)kMk =
k∑

p=0

k∑

l=0

(−1)pC(k, p)C(k, l)

λ2k+1−l
Dp

[
1

t(1 + t)2k−l−p

×
{
cos λt

{
(−1)l/2

(
(−1)l + 1

2

)
sinλ+ (−1)(l+1)/2

(
(−1)l+1 + 1

2

)
cos λ

}

+ sinλt
{
(−1)l/2

(
(−1)l + 1

2

)
cosλ− (−1)(l+1)/2

(
(−1)l+1 + 1

2

)
sinλ

}}]
.

For simplicity of notation, we will denote the following:

Ul =
{
(−1)l/2

(
(−1)l + 1

2

)
sinλ+ (−1)(l+1)/2

(
(−1)l+1 + 1

2

)
cos λ

}
,

Vl =
{
(−1)l/2

(
(−1)l + 1

2

)
cos λ− (−1)(l+1)/2

(
(−1)l+1 + 1

2

)
sinλ

}
.
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Then we have

(−1)kMk =

k∑

p=0

k∑

l=0

(−1)pC(k, p)C(k, l)

λ2k+1−l
Dp

{
1

t(1 + t)2k−l−p
(cos λtUl + sinλtVl)

}

=

k∑

p=0

k∑

l=0

(−1)pC(k, p)C(k, l)Ul

λ2k+1−l
Dp

{
1

t(1 + t)2k−l−p
cosλt

}

+

k∑

p=0

k∑

l=0

(−1)pC(k, p)C(k, l)Vl

λ2k+1−l
Dp

{
1

t(1 + t)2k−l−p
sinλt

}
.

Using the expressions for the derivatives from Lemma 3.4, and after some rearrangements, we get

(−1)kMk =
k∑

p=0

k∑

l=0

p∑

r=0

C(k, p)C(k, l)C(p, r)r!
(2k−l−p+r−1

r

)

λ2k+1−lt2p+1−r(1 + t)2k−l−p+r

{
cosλtUl + sinλtVl

}

−
k∑

p=1

k∑

l=0

p−1∑

m=0

m∑

r=0

p−m−1∑

s=0

C(k, p)C(k, l)
( p
m

)
C(m, r)C(p−m− 1, s)r!

(2k−p−l+r−1
r

)

λ2k−l−st2p−r−s(1 + t)2k−l−p+r

×
[
Ul

{
(−1)1+

s
2

(
(−1)s + 1

2

)
sinλt+ (−1)1+

s+1
2

(
(−1)s+1 + 1

2

)
cos λt

}

− Vl

{
(−1)1+

s
2

(
(−1)s + 1

2

)
cos λt− (−1)1+

s+1
2

(
(−1)s+1 + 1

2

)
sinλt

}]
.

Note that in the expression above, we have separated the m = p term. Our motivation for doing so is
that we want to use the expressions in Lemma 3.4. When m < p, at least one derivative lands on the
sin or cos term. We carry out one D derivative and then invoke the expressions from Lemma 3.4 for
p−m− 1 derivatives of sinx

x and cos x
x . Interchanging the order of summation in the second summand,

we get

(−1)kMk =
k∑

p=0

k∑

l=0

p∑

r=0

C(k, p)C(k, l)C(p, r)r!
(
2k−l−p+r−1

r

)

λ2k+1−lt2p+1−r(1 + t)2k−l−p+r

{
cos λtUl + sinλtVl

}

−
k∑

l=0

k−1∑

s=0

k∑

p=s+1

p−1−s∑

r=0

p−1−s∑

m=r

C(k, p)C(k, l)
( p
m

)
C(m, r)C(p−m− 1, s)r!

(2k−p−l+r−1
r

)

λ2k−l−st2p−r−s(1 + t)2k−l−p+r

×
[
Ul

{
(−1)1+

s
2

(
(−1)s + 1

2

)
sinλt+ (−1)1+

s+1
2

(
(−1)s+1 + 1

2

)
cos λt

}
(3.37)

− Vl

{
(−1)1+

s
2

(
(−1)s + 1

2

)
cos λt− (−1)1+

s+1
2

(
(−1)s+1 + 1

2

)
sinλt

}]
.

Next let us simplify the summation in m in the second summand. We have the following lemma:

Lemma 3.5. Denote by

C :=

p−1−s∑

m=r

1

p−m

(
2m− r

m− r

)(
2(p − 1−m)− s

p− 1−m− s

)
. (3.38)

Then

C =
1

s+ 1

(
2p− r − s− 1

p

)
.

Proof. This follows directly from the Abel-Aigner identity. For the sake of completeness, we give the
proof. The Abel-Aigner identity (see [8, 25]) is as follows:

∑

k

r

tk + r

(
tk + r

k

)(
t(n− k) + s

n− k

)
=

(
tn+ r + s

n

)
. (3.39)
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We have

C =

p−1−s∑

m=r

1

p−m

(
2(m− r) + r

m− r

)(
2(p − 1− s−m) + s

p− 1− s−m

)

=

p−1−s−r∑

m=0

1

p−m− r

(
2m+ r

m

)(
2(p − 1− s− r −m) + s

p− 1− s− r −m

)

=

p−1−s−r∑

m=0

1

s+ 1 +m

(
2(p − 1− s− r −m) + r

p− 1− s− r −m

)(
2m+ s

m

)

=

p−1−s−r∑

m=0

1

2m+ s+ 1

(
2(p − 1− s− r −m) + r

p− 1− s− r −m

)(
2m+ s+ 1

m

)
.

In the last but one step, we have replaced the index m by p − 1 − s − r −m and in the last step, we
have used the following equality,

1

m+ s+ 1

(
2m+ s

m

)
=

1

2m+ s+ 1

(
2m+ s+ 1

m

)
.

Now using Abel-Aigner identity (3.39), we get,

C =
1

s+ 1

(
2(p − 1− s− r) + r + s+ 1

p− 1− s− r

)
=

1

s+ 1

(
2p − s− r − 1

p− 1− s− r

)
=

1

s+ 1

(
2p− s− r − 1

p

)
.

This completes the proof of Lemma 3.5. �

Substituting this back in (3.37), we have

(−1)kMkλ
2k(t+ 1)2k

k!
=

k∑

p=0

k∑

l=0

p∑

r=0

C(k, l)
(
2k−p
k

)(
2p−r
p

)(
2k−l−p+r−1

r

)
λl−1(t+ 1)l+p−r

2k−rt2p+1−r

×
{
cos λtUl + sinλtVl

}

−
k∑

l=0

k−1∑

s=0

k∑

p=s+1

p−1−s∑

r=0

C(k, l)
(2k−p

k

)(2p−s−r−1
p

)(2k−p−l+r−1
r

)
λl+s(t+ 1)l+p−r

t2p−r−s(s+ 1)!2k−1−r−s

×
[
Ul

{
(−1)1+

s
2

(
(−1)s + 1

2

)
sinλt+ (−1)1+

s+1
2

(
(−1)s+1 + 1

2

)
cos λt

}

− Vl

{
(−1)1+

s
2

(
(−1)s + 1

2

)
cos λt− (−1)1+

s+1
2

(
(−1)s+1 + 1

2

)
sinλt

}]
.

We note that when s = −1, the term within square parantheses in the second summand above is
precisely − (cos λtUl + sinλtVl), and the remaining terms match. Therefore the first summand can be
absorbed in to the second by adding s = −1 term in the second. We get,

(−1)kMkλ
2k(t+ 1)2k

k!
= −

k∑

l=0

k−1∑

s=−1

k∑

p=s+1

p−1−s∑

r=0

C(k, l)
(2k−p

k

)(2p−s−r−1
p

)(2k−p−l+r−1
r

)
λl+s(t+ 1)l+p−r

t2p−r−s(s+ 1)!2k−1−r−s

×
[
Ul

{
(−1)1+

s
2

(
(−1)s + 1

2

)
sinλt+ (−1)1+

s+1
2

(
(−1)s+1 + 1

2

)
cos λt

}

− Vl

{
(−1)1+

s
2

(
(−1)s + 1

2

)
cosλt− (−1)1+

s+1
2

(
(−1)s+1 + 1

2

)
sinλt

}]
.

Reindexing in s, we then get,

(−1)kMkλ
2k(t+ 1)2k

k!
=

k∑

l=0

k∑

s=0

k∑

p=s

p−s∑

r=0

C(k, l)
(2k−p

k

)(2p−s−r
p

)(2k−p−l+r−1
r

)
λl+s−1(t+ 1)l+p−r

t2p−r−s+1s!2k−r−s

×
[
Ul

{
− (−1)

s+1
2

(
(−1)s+1 + 1

2

)
sinλt+ (−1)

s
2

(
(−1)s + 1

2

)
cosλt

}
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+ Vl

{
(−1)

s+1
2

(
(−1)s+1 + 1

2

)
cos λt+ (−1)

s
2

(
(−1)s + 1

2

)
sinλt

}]
.

For simplicity, we let

Bl,s = Ul

{
− (−1)

s+1
2

(
(−1)s+1 + 1

2

)
sinλt+ (−1)

s
2

(
(−1)s + 1

2

)
cos λt

}

+ Vl

{
(−1)

s+1
2

(
(−1)s+1 + 1

2

)
cos λt+ (−1)

s
2

(
(−1)s + 1

2

)
sinλt

}
,

where we recall that

Ul =
{
(−1)l/2

(
(−1)l + 1

2

)
sinλ+ (−1)(l+1)/2

(
(−1)l+1 + 1

2

)
cos λ

}
,

Vl =
{
(−1)l/2

(
(−1)l + 1

2

)
cos λ− (−1)(l+1)/2

(
(−1)l+1 + 1

2

)
sinλ

}
.

Replacing r by p− s− r, we get,

(−2)kλ2k+1(1 + t)2kMk

k!
=

k∑

l=0

k∑

s=0

k∑

p=s

p−s∑

r=0

2p−r
(2k−p

k

)
C(k, l)

(p+r
p

)(2k−s−l−1−r
p−s−r

)
λl+s(1 + t)l+s+r

tp+r+1s!
Bl,s.

We can let the lower limit of p to be 0 without affecting the summation. We then get

(−2)kλ2k+1(1 + t)2kMk

k!
=

k∑

l=0

k∑

s=0

k∑

p=0

p−s∑

r=0

2p−r
(2k−p

k

)
C(k, l)

(p+r
p

)(2k−s−l−1−r
p−s−r

)
λl+s(1 + t)l+s+r

tp+r+1s!
Bl,s.

Let us restrict the sum to those (l, s) such that l + s = u, where 0 ≤ u ≤ 2k. It is straightforward to
check that Bl,s depends on l+ s. If l+ s = u, sometimes we denote Bl,s as Bu for convenience. We call
this restricted sum on the right above as S. If 0 ≤ u ≤ k, then

S = S(u) =
(λ(1 + t))uk!Bl,s

2k−uu!t

u∑

s=0

k∑

p=0

p∑

r=0

2p−r−s
(2k−p

k

)(2k−u+s
k−u+s

)(u
s

)(p+r
r

)(2k−u−1−r
p−s−r

)
(1 + t)r

tp+r
. (3.40)

On the other hand, if k < u ≤ 2k, we have

S = S(u) =
(λ(1 + t))uk!Bl,s

2k−uu!t

k∑

s=u−k

k∑

p=0

p∑

r=0

2p−r−s
(
2k−p
k

)(
2k−u+s
k−u+s

)(
u
s

)(
p+r
r

)(
2k−u−1−r

p−s−r

)
(1 + t)r

tp+r
. (3.41)

With this, we have

Mk =
(−1)kk!

2kλ2k+1(1 + t)2k

2k∑

u=0

S(u). (3.42)

Replacing the index s by u− s in (3.40), we get,

S =
(λ(1 + t))uk!Bl,s

2ku!t

u∑

s=0

k∑

p=0

p∑

r=0

2p−r+s
(2k−p
k−p

)(2k−s
k−s

)(u
s

)(p+r
r

)(2k−u−1−r
2k−1−p−s

)
(1 + t)r

tp+r
. (3.43)

Similarly, we replace the index s by u− s in (3.41). We then get,

S =
(λ(1 + t))uk!Bl,s

2ku!t

k∑

s=u−k

k∑

p=0

p∑

r=0

2p−r+s
(
2k−p
k

)(
2k−s
k−s

)(
u
s

)(
p+r
r

)(
2k−u−1−r
2k−1−p−s

)
(1 + t)r

tp+r
. (3.44)

Our goal next is to simplify the summation given in (3.43) and (3.44). With this in mind, let us focus
our attention on

S1 :=

k∑

p=0

p∑

r=0

2p−r
(
2k−p
k

)(
p+r
r

)(
2k−u−1−r
2k−1−p−s

)
(1 + t)r

tp+r
. (3.45)
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We write S1 as follows:

S1 =
k∑

p=0

p∑

r=0

1

(2πi)3

∫

|z|=ε1

∫

|w|=ε2

∫

|v|=ε3

2p−r 1

(1− z)k+1zk−p+1

1

(1− w)p+1wr+1

× 1

(1− v)2k−p−sv−u+s−r+p+1

(1 + t)r

tp+r
dzdwdv,

(3.46)

for suitably chosen ε1, ε2, ε3.
Note that the right hand side of (3.46) vanishes when r > p or when p > k. For, when r > p, the

integral in v is 0 by Cauchy’s theorem and likewise when p > k, the integral in z is 0 for the same
reason. Hence in computing the integral in (3.46), we can let r = p = ∞. Later on, we will sum in

the s variable as well. Note that due to the presence of the combinatorial term
(2k−s
k−s

)
, we can let the

upper limit of s to be u regardless of whether 0 ≤ u ≤ k or k < u ≤ 2k. Furthermore, in the case when
k < u ≤ 2k; see (3.44), we can let the lower limit of s to be 0 as well, since in (3.46), the integral in v
is 0.

We now establish the choice of contours in (3.46). The contours will be determined based on taking
t fixed. Recall that we have t 6= 0 in the statement of the theorem. We will also assume that t 6= −1
as well. Equation (3.47) below is obtained by performing summation in p and r variable. In order for
the series to converge, we choose contours such that

|v| <
∣∣∣∣
2tw

1 + t

∣∣∣∣ and

∣∣∣∣
2z(1 − v)

(1− w)vt

∣∣∣∣ < 1.

With t arbitrary, but fixed, choose |w| = ε2 ≪ 1 and |v| = ε3 ≪ 1 both positive so that ε3 < 2|t|ε2
|1+t| .

Next choose |z| = ε1 ≪ 1 so that 2ε1(1+ε3)
(1−ε2)ε3|t| < 1. Then

∣∣∣∣
2z(1 − v)

(1− w)vt

∣∣∣∣ ≤
2ε1(1 + ε3)

(1− ε2)ε3|t|
< 1.

We have

S1 =
2t2

(2πi)3

∫∫∫
1

(1 − z)k+1zk+1

vu−s

(1− v)2k−s

1

t(1− w)v − 2z(1 − v)

1

2tw − v(1 + t)
dzdwdv. (3.47)

By choosing |z| = ε1 small enough, we can make w = 1− 2z(1−v)
tv an external pole. Therefore, performing

integration in w using residue theorem, we get

S1 =
2t

(2πi)2

∫∫
1

(1− z)k+1zk+1

vu−s

(1− v)2k−s

1

2tv − v2(1 + t)− 4z(1− v)
dzdv

= − 2t

(2πi)2(t+ 1)

∫∫
1

(1− z)k+1zk+1

vu−s

(1− v)2k−s

1

v2 − 2tv
t+1 +

4z
1+t(1− v)

dzdv

= − 2t

(2πi)2(t+ 1)

∫∫
1

(1− z)k+1zk+1

vu−s

(1− v)2k−s

1(
v − t+2z

t+1 −
√
t2+4z2−4z

t+1

)

× 1(
v − t+2z

t+1 +
√
t2+4z2−4z

t+1

)dzdv.

We have that

v =
t+ 2z

t+ 1
−

√
t2 + 4z2 − 4z

t+ 1
, (3.48)

is a simple pole. Reducing ε1 if necessary, we can ensure that v is in the interior of |v| = ε3, since v in
(3.48) can be written in the form,

v =
t+ 2z

t+ 1
−
√

(t+ 2z)2 − 4z(t+ 1)

t+ 1
.
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The other root of v can be made an external pole by choosing ε1 small enough. Integrating in v, we
get,

S1 =
t(t+ 1)2k−u

2πi

∫
1

(1− z)k+1zk+1

(
(t+ 2z) −

√
t2 + 4z2 − 4z

)u−s

(1− 2z +
√
t2 + 4z2 − 4z)2k−s

1√
t2 + 4z2 − 4z

dz.

As in [40], we make the change of variable z(1 − z) = η, and we have that the image of |z| = ε1 is a
closed contour which makes one complete turn with origin in its interior and which can be deformed to
a circle. We have

z =
1−√

1− 4η

2
.

Then

S1 =
t(t+ 1)2k−u

2πi

∫
1

ηk+1

(
t+ 1−√

1− 4η −
√

t2 − 4η
)u−s

(
√
1− 4η +

√
t2 − 4η)2k−s

1√
t2 − 4η

√
1− 4η

dη.

For simplicity of notation, we let

α =
√

1− 4η, β =
√
t2 − 4η.

Next let us perform summation in s variable. Recall from the earlier discussion that we can let the
lower and upper limits of s to be 0 and u, respectively, regardless of whether 0 ≤ u ≤ k or k < u ≤ 2k.
We get

S2 :=
u∑

s=0

2s
(
u

s

)(
2k − s

k

)
S1

=
t(t+ 1)2k−u

(2πi)2

∫∫
1

(1− w)k+1wk+1ηk+1

(t+ 1− α− β + 2w(α + β))u

(α+ β)2k
1

αβ
dηdw.

As before, let us make the change of variable w(1− w) = γ. Then we have

S2 =
t(t+ 1)2k−u

(2πi)2

∫∫
1

(γη)k+1

(
(t+ 1− (

√
1− 4γ)(α+ β)

)u

(α+ β)2k
1

αβ

1√
1− 4γ

dηdγ

=
t(t+ 1)2k−u

(2πi)2

u∑

s=0

(−1)u+s

(
u

s

)∫∫
1

(γη)k+1

(t+ 1)s

(α+ β)2k−u+s

1

αβ

1
(√

1− 4γ
)1+s−udηdγ

=
t(t+ 1)2k−u

(2πi)2

u∑

s=0

(−1)u+s

(
u

s

)
(t+ 1)s

∫ (√
1− 4γ

)u−s−1

γk+1
dγ

∫
1

(α+ β)2k−u+sηk+1αβ
dη.

Next let us make the change of variable, α+ β = δ. The image of the η curve is a closed contour with
1 + t in its interior.

We have

−2

(
α+ β

αβ

)
dη = dδ.

Also

η =
4δ2t2 − (δ2 + t2 − 1)2

16δ2
=

(1− (δ − t)2)((δ + t)2 − 1)

16δ2
.

Then

S2 = −24k+3t(t+ 1)2k−u

(2πi)2

u∑

s=0

(−1)u+s

(
u

s

)
(t+ 1)s

∫ (√
1− 4γ

)u−s−1

γk+1
dγ

×
∫ (

(1− (δ − t)2)((δ + t)2 − 1)
)−k−1

δs−1−u
dδ

= (−1)k
24k+3t(t+ 1)2k−u

(2πi)2

u∑

s=0

(−1)u+s

(
u

s

)
(t+ 1)s

∫ (√
1− 4γ

)u−s−1

γk+1
dγ

×
∫

δu+1−s

((δ2 − (t+ 1)2)(δ2 − (t− 1)2))k+1
dδ.
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Let us introduce one more change of variable to make the computation easier:

δ2 − (t+ 1)2 = β.

Then we have

S2 = (−1)k
24k+2t(t+ 1)2k−u

(2πi)2

u∑

s=0

(−1)u+s

(
u

s

)
(t+ 1)s

∫ (√
1− 4γ

)u−s−1

γk+1
dγ

∫ (
β + (t+ 1)2

)u−s
2

(β(β + 4t))k+1
dβ.

Note that the contour in β variable is a simple closed curve with origin in its interior. We rewrite
(replacing s by u− s in the summation),

S2 = (−1)k
24k+2t(t+ 1)2k

(2πi)2

u∑

s=0

(−1)s
(
u

s

)
(t+ 1)−s

∫
(1− 4γ)

s−1

2

γk+1
dγ

∫ (
β + (t+ 1)2

) s
2

(β(β + 4t))k+1
dβ.

We note that only those terms for which s is even survive. Therefore we can write S2 as

S2 = (−1)k
24k+2t(t+ 1)2k

(2πi)2

u∑

s=0,s−even

(−1)s
(
u

s

)
(t+ 1)−s

∫
(1− 4γ)

s−1

2

γk+1
dγ

∫ (
β + (t+ 1)2

) s
2

(β(β + 4t))k+1
dβ.

We now assume that u is even. The odd case can be dealt with similarly, and we will not give the proof
separately. We have

S2 = (−1)k
24k+2t(t+ 1)2k

(2πi)2

u/2∑

m=0

(
u

2m

)
(t+ 1)−2m

∫
(1− 4γ)

2m−1

2

γk+1
dγ

∫ (
β + (t+ 1)2

)m

(β(β + 4t))k+1
dβ

= (−1)k
24k+2t(t+ 1)2k

(2πi)2

u/2∑

m=0

(
u

2m

)
(t+ 1)−2m

∫
(1− 4γ)

2m−1

2

γk+1
dγ

∫ m∑

q=0

(
m

q

)
βq(t+ 1)2m−2q

(β(β + 4t))k+1
dβ

= (−1)k
24k+2t(t+ 1)2k

(4t)k+1(2πi)2

u/2∑

m=0

m∑

q=0

(
u

2m

)(
m

q

)
(t+ 1)−2q

∫
(1− 4γ)

2m−1

2

γk+1
dγ

∫
1

βk−q+1
(
1 + β

4t

)k+1
dβ

= (−1)k
22k(t+ 1)2k

tk(2πi)2

u/2∑

m=0

m∑

q=0

(
u

2m

)(
m

q

)
(t+ 1)−2q

∫
(1− 4γ)

2m−1

2

γk+1
dγ

∫
1

βk−q+1

∑

p≥0

(
k + p

p

)
(−β)p

(4t)p
dβ

=
(t+ 1)2k−u

t2k2πi

u/2∑

m=0

m∑

q=0

(−1)q(4t)q(t+ 1)u−2q

(
u

2m

)(
m

q

)∫
(1− 4γ)

2m−1

2

γk+1
dγ

(
2k − q

k

)
.

We have

1

2πi

∫
(1− 4γ)

2m−1

2

γk+1
dγ =

(−1)m
(2m
m

)(2k−m
k

)
(2k−m

m

) .

Then

S2 =
(t+ 1)2k−u

t2k

u/2∑

m=0

m∑

q=0

(−1)q+m(4t)q(t+ 1)u−2q

( u
2m

)(m
q

)(2m
m

)(2k−m
k

)(2k−q
k

)
(2k−m

m

) .

Expanding (t+ 1)u−2q, we get,

S2 =
(t+ 1)2k−u

t2k

u/2∑

m=0

m∑

q=0

u−2q∑

r=0

(−1)q+m(4t)q
(
u− 2q

r

)
tr

(
u
2m

)(
m
q

)(
2m
m

)(
2k−m

k

)(
2k−q
k

)
(2k−m

m

) .

We now look at specific coefficients of a fixed power of t inside the summation. With this in mind,
let us set q + r = j. Note that 0 ≤ j ≤ u. Then we get the following: The coefficient of tj in the
summation is

C(j) :=

u/2∑

m=0

m∑

q=0

(−1)q+m4q
(u−2q
j−q

)( u
2m

)(m
q

)(2m
m

)(2k−m
k

)(2k−q
k

)
(2k−m

m

)
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=

u/2∑

q=0

u/2∑

m=q

(−1)q+m4q
(u−2q
j−q

)( u
2m

)(m
q

)(2m
m

)(2k−m
k

)(2k−q
k

)
(2k−m

m

) .

With this, we have

S2 =
(t+ 1)2k−u

t2k

u∑

j=0

C(j)tj .

Our final goal is to simplify this summation.
We first make a few straightforward observations about C(j).

• The sum is invariant when j is replaced by u− j. Hence it is enough to prove for 0 ≤ j ≤ u/2.
• The sum is 0 when j ≥ u+ 1.

Due to the third combinatorial term, we can replace the lower limit of the summation in m by 0. We
first consider summation in m. We consider

C1 :=

u/2∑

m=0

(−1)m
(

u
2m

)(
m
q

)(
2m
m

)(
2k−m

k

)
(
2k−m
m

) . (3.49)

Using
(2k−m

k )
(2k−m

m )
=

(2k−2m

k−m )
(k

m)
, we have

C1 =
(2k − u)!u!

k!q!(k − q)!

u/2∑

m=0

(−1)m
(
2k − 2m

2k − u

)(
k − q

k −m

)
.

Now due to the first combinatorial sum inside the summation, we can replace the upper index of the
summation by k. Further replacing k −m by m, we then get,

C1 =
(−1)k(2k − u)!u!

k!q!(k − q)!

k∑

m=0

(−1)m
(

2m

2k − u

)(
k − q

m

)
. (3.50)

In (3.50) above, we can assume the summation in m is till k − q. We then get,

C1 =
(−1)k(2k − u)!u!

k!q!(k − q)!(2πi)

∫
1

z2k−u+1
(1− (1 + z)2)k−qdz

=
(−1)q(2k − u)!u!

k!q!(k − q)!(2πi)

∫
(z + 2)k−q

zk−u+q+1
dz

=
(−1)q2k−q(2k − u)!u!

k!q!(k − q)!(2πi)

∫ k−q∑

r=0

(
k − q

r

)
zr

2rzk−u+q+1
dz

=
(−1)q2k−q(2k − u)!u!

2k−u+qk!q!(k − q)!

(
k − q

k − u+ q

)

=
(−1)q2u−2q(2k − u)!u!

k!q!(k − q)!

(
k − q

u− 2q

)
.

With this the summation in q becomes

C(j) =
2u(2k − u)!u!

(k!)2

u/2∑

q=0

(
u− 2q

j − q

)(
2k − q

k

)(
k − q

u− 2q

)(
k

q

)

=
2u(2k − u)!u!

(k!)2

u/2∑

q=0

(
u− 2q

j − q

)(
2k − q

k − q

)(
k − q

u− 2q

)(
k

q

)

=
2u(2k − u)!u!

(k!)2

u/2∑

q=0

(
u− 2q

j − q

)(
2k − q

u− 2q

)(
2k − u+ q

k

)(
k

q

)

=
2u(2k − u)!u!

(k!)2

u/2∑

q=0

(
2k − q

u− 2q

)(
u− 2q

j − q

)(
2k − u+ q

k

)(
k

q

)
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=
2u(2k − u)!u!

(k!)2

u/2∑

q=0

(
2k − q

j − q

)(
2k − j

2k + q − u

)(
2k − u+ q

k

)(
k

q

)

=
2u(2k − u)!u!

(k!)2

(
2k − j

k

) u/2∑

q=0

(
2k − q

j − q

)(
k − j

u− q − j

)(
k

q

)
.

We consider the following summation. Here note that we have let the upper limit of the summation
index q to be k. This is justified by the fact observed earlier that it is enough to consider 0 ≤ j ≤ u/2.

C2 :=

k∑

q=0

(
2k − q

j − q

)(
k − j

u− q − j

)(
k

q

)
.

We have

C2 =
k∑

q=0

1

(2πi)2

∫∫
(1 + z)2k−q

zj−q+1

(1 + w)k−j

wu−q−j+1

(
k

q

)
dzdw

=
1

(2πi)2

∫∫
(1 + z)2k

zj+1

(1 + w)k−j

wu−j+1

(
1 +

zw

1 + z

)k

dzdw

=
1

(2πi)2

∫∫
(1 + z)k

zj+1

(1 + w)k−j

wu−j+1
(1 + z(1 + w))k dzdw

=
1

(2πi)2

∫∫
(1 + z)k

zj+1

(1 + w)k−j

wu−j+1

k∑

q=0

(
k

q

)
zq(1 +w)qdzdw

=

k∑

q=0

(
k

q

)
1

(2πi)2

∫∫
(1 + z)k

zj−q+1

(1 + w)k+q−j

wu−j+1
dzdw

=

k∑

q=0

(
k

q

)(
k

j − q

)(
k + q − j

u− j

)

=

k∑

q=0

(
k

q

)(
k

k − j + q

)(
k + q − j

u− j

)

=
k∑

q=0

(
k

q

)(
k

u− j

)(
k − u+ j

j − q

)

=

(
k

u− j

)(
2k − u+ j

j

)
.

Now we have

C(j) =
2u(2k − u)!u!

(k!)2

(
2k − j

k

)(
k

u− j

)(
2k − u+ j

j

)

=
2u(2k − u)!u!

(k!)2
(2k − j)!

k!(k − j)!

k!

(u− j)!(k − u+ j)!

(2k − u+ j)!

j!(2k − u)!

= 2u
(
u

j

)(
2k − j

k

)(
2k − u+ j

k

)
.

Therefore, going back to (3.42), we now have

Mk(λ) =
(−1)k(k!)2

4k(λt)2k+1

2k∑

u=0

u∑

j=0

2uλu

u!

(
u

j

)(
2k − j

k

)(
2k − u+ j

k

)
tjBu.

To conclude the proof of Theorem 3.3, let us expand the right hand side of (3.33). We let the right

hand side of (3.33) be M̃k. We have

M̃k = (−1)k
{
Dk

(
sin(λt)

t

)
yα(λ) +Dk

(
cos(λt)

t

)
jα(λ)

}
.
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Expanding using formulas from Lemma 3.4, we have

M̃k =
(−1)k

λ2k+1t2k+1

k∑

l=0

k∑

m=0

C(k, l)C(k,m)λl+mtm

×
{
sinλ(1 + t)(−1)

l+m
2

{(
(−1)l + 1

2

)(
(−1)m + 1

2

)
+

(
(−1)l+1 + 1

2

)(
(−1)m+1 + 1

2

)}

+ cos λ(1 + t)(−1)
l+m+1

2

{(
(−1)l + 1

2

)(
(−1)m+1 + 1

2

)
+

(
(−1)l+1 + 1

2

)(
(−1)m + 1

2

)}}
.

Using the expression for Bl,s defined earlier, we have

M̃k =
(−1)k

λ2k+1t2k+1

k∑

l=0

k∑

m=0

C(k, l)C(k,m)λl+mtmBl,m.

We now restrict the sum to those (l,m) such that l +m = u with 0 ≤ u ≤ 2k. Then

M̃k =
(−1)k

λ2k+1t2k+1

2k∑

u=0

λu
u∑

m=0

C(k, u−m)C(k,m)tmBu

=
(−1)k(k!)2

4kλ2k+1t2k+1

2k∑

u=0

u∑

m=0

2uλu

u!

(
u

m

)(
2k −m

k

)(
2k − u+m

k

)
tmBu.

We have shown that Mk = M̃k and this completes the proof of the theorem. �

Using Theorem 3.3, we now prove the sufficiency part of Theorem 1.1.

Proof of Sufficiency part of Theorem 1.1. The sufficiency part of proof of the main theorem follows as
a straightforward consequence of (3.32) combined with Theorem 2.4. Indeed for λ > 0, the left hand
side of (3.32) is the product of the Hankel transform of g (recall that h(t) = tn−2g(t)) and the spherical
Bessel function of the second kind. Theorem 3.2 says that this factors into a product of two functions,
one of them being the spherical Bessel function of the first kind in λ. Since j

k+
1
2
(λ) and y

k+
1
2
(λ) have

no common zeros [1, eq.(9.5.2)], by Theorem 2.4, we have the sufficiency part of Theorem 1.1. �

3.2. Range characterization for general functions. We now prove the range characterization for
a general (not necessarily radial) function by expansion into spherical harmonics. The calculations of
the previous proof are going to be crucially used.

Proof of Theorem 1.4. Following the calculations done in [43], we have the following:

gm,l(t) =
ωn−1

4
n−3
2 tn−2ωnC

n−2
2

m (1)

1∫

|1−t|

ufm,l(u)C
n−2
2

m

(
1 + u2 − t2

2u

){(
(1 + t)2 − u2

) (
u2 − (1− t)2

)}n−3
2

du

=
ωn−1

tn−2ωnC
n−2
2

m (1)

1∫

|1−t|

un−2fm,l(u)C
n−2
2

m

(
1 + u2 − t2

2u

){
1−

(
1 + u2 − t2

)2

4u2

}n−3
2

du. (3.51)

We use the following formula for Gegenbauer polynomials:

C(α)
m (x) = K(1− x2)−α+

1
2
dm

dxm
(
1− x2

)m+α−1
2 ,

where

K =
(−1)mΓ(α+ 1

2)Γ(m+ 2α)

2mm!Γ(2α)Γ(m + α+ 1
2 )

.

By repeated application of chain rule, we have

C
n−2
2

m

(
1 + u2 − t2

2u

)
= K

(
1−

(
1 + u2 − t2

2u

)2
)−n−3

2

(−u)mDm

(
1−

(
1 + u2 − t2

)2

4u2

)m+
n−3
2

,

(3.52)
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where, we recall that D = 1
t
d
dt . Substituting (3.52) into (3.51), we get,

tn−2gm,l(t) =
K(−1)mωn−1

ωnC
n−2
2

m (1)

1∫

|1−t|

um+n−2fm,l(u)D
m

(
1−

(
1 + u2 − t2

)2

4u2

)m+
n−3
2

du.

Noting that k = n−3
2 and that Dm can be taken outside the integral, we get,

tn−2gm,l(t) =
K(−1)mωn−1

4m+kωnC
n−2
2

m (1)

Dm

1∫

|1−t|

u1−mfm,l(u)
(
4u2 −

(
1 + u2 − t2

)2)m+
n−3
2

du

=
K(−1)mωn−1

4m+kωnC
n−2
2

m (1)

Dm

1∫

|1−t|

u1−mfm,l(u)
(
2(u2 + 1)t2 − t4 − (1− u2)2

)m+
n−3
2 du.

We denote

hm,l(t) = tn−2gm,l(t)

φm,l(t) =

1∫

|1−t|

u1−mfm,l(u)
(
2(u2 + 1)t2 − t4 − (1− u2)2

)m+
n−3
2 du.

Then we have

hm,l(t) =
K(−1)mωn−1

4m+kωnC
n−2
2

m (1)

Dmφm,l(t).

We make the following observations:

• φm,l(t) ∈ C∞
c ((0, 2)),

• φm,l(t) satisfies

[Lm+kφm,l](1− t) = [Lm+kφm,l](1 + t),

where, we recall that

Lm+k =

m+k∑

p=0

(m+ k + p)!

(m+ k − p)!p!2p
(1− t)m+k−pDm+k−p, D =

1

t

d

dt
,

The smoothness in the first point follows from the fact that gm,l(t) is a smooth function and φm,l(t)
is the solution of a linear ODE with smooth coefficients and with zero initial conditions. The fact
that the support is strictly in (0, 2) is due to the fact that fm,l ∈ C∞([0, 1)) has support strictly away
from 1. The second point follows from the necessity part of Theorem 1.1 by replacing k by m + k.
Hence we have the following necessary condition: There is a function φm,l ∈ C∞

c ((0, 2)), such that
hm,l(t) = Dmφm,l(t) and φm,l(t) satisfies

[Lm+kφm,l](1− t) = [Lm+kφm,l](1 + t).

We note that for each 0 ≤ l ≤ dm, φm,l satisfies the same ODE.
Next we show that this condition is also sufficient. Since φm,l(t) ∈ C∞

c ((0, 2)) and φm,l(t) satisfies

[Lm+kφm,l](1− t) = [Lm+kφm,l](1 + t),

we have by the sufficiency part of the proof of Theorem 1.1 that



∞∫

0

j
k+m+

1
2
(λt)tφm,l(t)dt


 y

k+m+
1
2
(λ) =




∞∫

0

y
k+m+

1
2
(λt)tφm,l(t)dt


 j

k+m+
1
2
(λ).

Therefore, we have



∞∫

0

Dmj
k+

1
2
(λt)tφm,l(t)dt


 y

k+m+
1
2
(λ) =




∞∫

0

Dmy
k+

1
2
(λt)tφm,l(t)dt


 j

k+m+
1
2
(λ).



32 AGRAWAL, AMBARTSOUMIAN, KRISHNAN, SINGHAL

Integrating by parts, we get,



∞∫

0

j
k+

1
2
(λt)thm,l(t)dt


 y

k+m+
1
2
(λ) =




∞∫

0

y
k+

1
2
(λt)thm,l(t)dt


 j

k+m+
1
2
(λ).

We have the same expression for each 0 ≤ l ≤ dm and hence the mth order spherical harmonic term
of the Hankel transform of g defined as the orthogonal projection of the Hankel transform of g onto
the subspace of spherical harmonics of degree m vanishes at the non-zero zeros of the spherical Bessel
function j

k+m+
1
2
(λ) satisfying [4, Condition 4, Theorem 11]. We are done with the general case as

well. �

3.3. Counterexample to UCP. In this subsection we prove Theorem 1.8 and Corollary 1.9. In both
the cases, we consider functions possessing radial symmetry. The proof presented here uses the range
characterization (Theorem 1.1). In fact, this approach has been employed before, see for instance [35,
Section VI.4] where it was used to show that the interior problem of computed tomography is not
uniquely solvable. The second proof (see Section 4) directly produces the function f claimed in the
theorem. Due to the local nature of the operator, the construction of such an f is relatively easier.
However, in case of non-local problems, the approach via the range characterization may be better
suited.

Proof of Theorem 1.8. Let g ∈ C∞
c ((0, 2)) be a non-trivial function such that h(t) = tn−2g(t) satisfies

(1.1). Let α > 0 be such that α < 1− ǫ. Let us choose g such that supp g ⊂ (α, 1− ǫ)∪ (1+ ǫ, 2−α) (see
lemma 3.8 for existence of such a non-trivial function). By theorem 1.1, there exists a unique non-trivial
function f ∈ C∞

c (B) possessing radial symmetry, such that Rf(p, t) = g(t) and hence Rf(p, t) = 0 for
all p ∈ S

n−1 and t ∈ (1− ǫ, 1 + ǫ). This f can be represented by the expressions given in Theorem 2.2.
Since the value of f at a point x ∈ B depends only on the values of Rf on spheres passing through a
neighborhood of x, we have f |U = 0. The proof is complete. �

Remark 3.6. Since Rf(p, t) = 0 for t < α, one can also conclude that f(x) = 0 for |x| > 1− α, using
support-type theorems [9].

Proof of Corollary 1.9. Let U be an arbitrary open set in B, and define m := infx∈U |x| and M :=
supx∈U |x|. Invoking theorem 1.8 with ǫ = M , there exists a non-trivial radial function f such that f
vanishes in {|x| < M} and Rf vanishes for all t ∈ (1 − M, 1 + M), i.e., Rf vanishes on all spheres
intersecting {|x| < M}. In particular, f vanishes on U and Rf vanishes on all spheres intersecting
U . �

Remark 3.7. In the case of functions possessing radial symmetry, the above counterexample is optimal
in the sense that the function necessarily vanishes on all of {|x| < M}. This can be seen as follows:
Due to radial symmetry, if f vanishes in U , it vanishes in the annulus AU := {x ∈ B : m < |x| < M}.
Similarly, if Rf vanishes on all spheres intersecting U , it vanishes on all spheres passing through AU .
In particular, Rf vanishes on all spheres passing through {|x| < M}. The local nature of the inversion
formula implies that f vanishes on {|x| < M}.

The counterexamples to unique continuation given above rely on the existence of a non-trivial func-
tion satisfying the range condition, and having appropriate support. We prove the existence of such a
function using basic theory of linear ordinary differential equations with variable coefficients.

Lemma 3.8. Let ǫ ∈ (0, 1) and α > 0 such that α < 1 − ǫ. There exists a non-trivial function
h ∈ C∞

c ((0, 2)) such that supph ⊂ (α, 1 − ǫ) ∪ (1 + ǫ, 2− α) and satisfying

[Lkh](1 − t) = [Lkh](1 + t) for all t ∈ (0, 1).

Proof. Let us first consider k = 0. In this case, we want a function supported in (α, 1− ǫ)∪ (1+ ǫ, 2−α)
and satisfying

h(1 − t) = h(1 + t) for all t ∈ (0, 1).

This can be easily done by choosing a smooth function supported in (1 + ǫ, 2− α) and then extending
it to (0, 1) by the relation given above. This idea also works for k > 0, with some added technical
difficulties.
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Let us now assume k > 0. The range condition can be written as

k∑

l=0

(−1)k−l(k + l)!

(k − l)!l!2l
tk−l

(
1

(1− t)

d

dt

)k−l

(h(1 − t)) (3.53)

=

k∑

l=0

(−1)k−l(k + l)!

(k − l)!l!2l
tk−l

(
1

(1 + t)

d

dt

)k−l

(h(1 + t)).

Let H̃ ∈ C∞
c ((1, 2)) be such that supp(H̃) ⊂ (1 + ǫ, 2− α) to be chosen later and for t ∈ (0, 1), denote

G(t) =

k∑

l=0

(−1)k−l(k + l)!

(k − l)!l!2l
tk−l

(
1

(1 + t)

d

dt

)k−l

(H̃(1 + t)).

Then G ∈ C∞
c ((0, 1)) and supp(G) ⊂ (ǫ, 1− α). Let us consider the ODE




k∑
l=0

(−1)k−l(k+l)!
(k−l)!l!2l

tk−l
(

1
(1−t)

d
dt

)k−l
(H(t)) = G(t) for t ∈ (ǫ, 1 − α),

(
H(ǫ),H(1)(ǫ), . . . ,H(k−1)(ǫ)

)
= 0.

(3.54)

The above ODE can be re-written as



k∑
l=0

al(t)
(
d
dt

)l
H(t) = G(t) for t ∈ (ǫ, 1− α),

(
H(ǫ),H(1)(ǫ), . . . ,H(k−1)(ǫ)

)
= 0,

(3.55)

where al are rational functions of t smooth in the interval (ǫ, 1− α). Note that

ak(t) =
(−1)ktk

(1− t)k
,

and thus 1
ak

is also smooth in (ǫ, 1− α). Multiplying throughout by 1/ak, the ODE becomes



H(k)(t) +

k−1∑
l=0

al(t)
ak(t)

(
d
dt

)l
H(t) = (−1)k (1−t)k

tk
G(t) for t ∈ (ǫ, 1 − α),

(
H(ǫ),H(1)(ǫ), . . . ,H(k−1)(ǫ)

)
= 0.

(3.56)

Next we use the representation for the solution to the above ODE, given in [17, Ch. 3, eq.(6.2)]. If
ϕ1, . . . , ϕk is a basis of solutions to the homogeneous equation

H(k)(t) +

k−1∑

l=0

al(t)

ak(t)

(
d

dt

)l

H(t) = 0,

then the solution to (3.56) is given by

H(t) =
k∑

j=1

ϕj(t)

t∫

ǫ

Wj(s)

W (ϕ1, . . . , ϕk)(s)
(−1)k

(1− s)k

sk
G(s) ds, (3.57)

whereW (ϕ1, . . . , ϕk) is the Wronskian of the basis ϕ1, . . . , ϕk andWj(s) is obtained fromW (ϕ1, . . . , ϕk)

by replacing the j−th column
(
ϕj , ϕ

(1)
j , . . . , ϕ

(k−1)
j

)
by (0, 0, . . . , 1) and then taking the determinant.

Due to the support restriction of G, H vanishes in a small interval to the right of t = ǫ, and hence all its
derivatives vanish at t = ǫ. In particular, H(ǫ) = H(1)(ǫ) = · · · = H(k−1)(ǫ) = 0. Thus, by uniqueness,
this is the solution of the ODE (3.56).

We also want the function H and all its derivatives to vanish at t = 1− α. To this end, recall that

G(t) =

k∑

l=0

(−1)k−l(k + l)!

(k − l)!l!2l
tk−l

(
1

(1 + t)

d

dt

)k−l

(H̃(1 + t)) (3.58)

=
k∑

l=0

bl(t)

(
d

dt

)l

(H̃(1 + t)). (3.59)
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The exact expression of the coefficients bl is not important, but note that these are rational functions
of t smooth in the interval (ǫ, 1 − α). Substituting this into the expression for H and performing

integration by parts (no boundary terms due to support condition of H̃), we obtain

H(1− α) =

1−α∫

ǫ

Φ(s)H̃(1 + s) ds (3.60)

for some smooth function Φ.
If Φ ≡ 0, there is nothing to prove. If not, ∃s0 ∈ (ǫ, 1−α) in which Φ(s) is either positive or negative

and hence by continuity, keeps the same sign in a small interval around s0. Let this interval be I0. Let
I1, I2 ⊂ I0 be disjoint. Choose two cut-off functions χ1 and χ2 supported in I1 and I2 respectively. For
t ∈ (1, 2), let us choose

H̃(t) = c1χ1(t− 1) + c2χ2(t− 1)

for c1, c2 to be chosen later. We then have

1−α∫

ǫ

Φ(s)H̃(1 + s) ds = c1

1−α∫

ǫ

Φ(s)χ1(s) ds+ c2

1−α∫

ǫ

Φ(s)χ2(s) ds

= c1

∫

I1

Φ(s)χ1(s) ds+ c2

∫

I2

Φ(s)χ2(s) ds.

Choosing c1 = −
∫
I2

Φ(s)χ2(s) ds and c2 =
∫
I1

Φ(s)χ1(s) ds, we get

H(1− α) =

1−α∫

ǫ

Φ(s)H̃(1 + s) ds

= 0.

In fact, due to the choice of support of H̃, H vanishes in a small interval to the left of t = 1 − α and
hence all its derivatives also vanish at t = 1− α. Thus, the function H, defined in (ǫ, 1− α), obtained
above can be extended by 0 to a smooth function in (0, 1). Finally, the function h ∈ C∞

c ((0, 2)) defined
as

h(t) =

{
H(1− t), for t ∈ (0, 1),

H̃(t), for t ∈ (1, 2),
(3.61)

satisfies the assumptions of the lemma. �

4. Alternate proof of main theorems

In Section 3.1, we proved the necessary and sufficient condition separately. Our proof for sufficiency
was based on showing that our range condition implies the existing range characterization of [5] (see
Theorem 2.4). In this section, however, we are going to take a different approach based on the results
in [23], which proves both implications directly. Let us explain the main idea now.

Consider the inversion formula (2.4), which can be re-written as

f(x) = K(n) (N ∗D∗∂tDN f) (x) +K(n) (N ∗D∗∂tt∂tDN f) (x).

Comparing this with (2.5), we observe

(N ∗D∗∂tDN f) (x) = 0,

and thus

range (DN ) ⊂ ker (N ∗D∗∂t) .

In fact, the reverse inclusion also holds (see the discussion following [23, Theorem 3]) and we have

range (DN ) = ker (N ∗D∗∂t) . (4.1)

This is a key observation for our proof.
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Proof of Theorem 1.1. Let g ∈ C∞
c ((0, 2)) and consider h(t) := tn−2g(t) as before. Our first step is to

find conditions on h such that Dh ∈ ker(N ∗D∗∂t). Since h ∈ C∞
c ((0, 2)), N ∗D∗∂tDh ∈ C∞(Rn). Thus,

it is enough to find conditions on h such that (N ∗D∗∂tDh) (x) = 0 for x such that |x| ∈ (0, 1).
For U = U(t) ∈ C∞

c ((0, 2)), using Funk-Hecke theorem, we have

(N ∗U)(x) =
1

ωn

∫

Sn−1

U(|p− x|)
|p− x| dS(p)

=
ωn−1

ωn

1∫

−1

U(
√

1 + |x|2 − 2|x|t)√
1 + |x|2 − 2|x|t

(1− t2)k dt.

Let c(n) denote the constant ωn−1

ωn
. Changing the variables u =

√
1 + |x|2 − 2|x|t, we get

(N ∗U)(x) =
c(n)

22k|x|2k+1

1+|x|∫

1−|x|

U(u)[4|x|2 − (1 + |x|2 − u2)2]k du. (4.2)

Let us denote

P (x, u) = 1 + |x|2 − u2

and A(x, u) = 4|x|2 − P 2(x, u).

Observe that

P (x, 1 ± |x|) = ∓2|x|,
A(x, 1 ± |x|) = 0.

Thus we have for x 6= 0,

(N ∗U)(x) =
c(n)

22k|x|2k+1

1+|x|∫

1−|x|

U(u)Ak(x, u) du.

We also have the expression

D∗∂tDh =
(−1)k

22k
∂tD

2kh.

These yield

(N ∗D∗∂tDh)(x) =
c(n)(−1)k

24k|x|2k+1

1+|x|∫

1−|x|

∂tD
2kh ·Ak(x, t) dt.

Since A vanishes at t = 1 ± |x|, we can perform integration by parts k-times without picking up the
boundary terms to get

(N ∗D∗∂tDh)(x) =
c(n)

24k|x|2k+1

1+|x|∫

1−|x|

∂tD
kh ·DkAk(x, t) dt.

We want to transfer all the derivatives to A, but now we will pick up the boundary terms. Invoking
Lemma 2.9, we obtain

(N ∗D∗∂tDh)(x) =
c(n)

24k|x|2k+1

[
k−1∑

l=0

(−1)lDk−lh ·Dk+lAk

]1+|x|

t=1−|x|

+ (−1)k
c(n)

24k|x|2k+1

1+|x|∫

1−|x|

∂th ·D2kAk dt.

Next, we need an expression for

Dk+lAk(x, t) for 0 ≤ l ≤ k.
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Observe that

DA = 4P,

D2A = −8,

and DjA = 0 for j ≥ 3.

We invoke the special case of Faà di Bruno’s formula (see Lemma 2.8) with F (t) = tk and G(t) = A(x, t).
Notice that F is a polynomial of degree k and thus, we obtain

Dk+lAk(x, t) =
k∑

i≥ k+l
2

(−1)k+l−i k!(k + l)!22i

(k − i)!(2i − k − l)!(k + l − i)!
P 2i−k−lAk−i.

Substituting this above, we find

(N ∗D∗∂tDh)(x) =
c(n)

24k|x|2k+1



k−1∑

l=0

(−1)lDk−lh ·
k∑

i≥ k+l
2

(−1)k+l−ik!(k + l)!22i

(k − i)!(2i − k − l)!(k + l − i)!
P 2i−k−lAk−i




1+|x|

1−|x|

+ (−1)k
c(n)

22k|x|2k+1

1+|x|∫

1−|x|

∂th ·
(
(−1)kk!(2k)!

k!

)
dt.

Since A(x, 1 ± |x|) = 0, only i = k term survives in the boundary term to give

(N ∗D∗∂tDh)(x) =
c(n)

24k|x|2k+1

[
k−1∑

l=0

k!(k + l)!22k

(k − l)!l!
P k−lDk−lh

]1+|x|

1−|x|

+
c(n)

22k|x|2k+1
(2k)![h]

1+|x|
1−|x|.

Writing it out, we have

(N ∗D∗∂tDh)(x) =
c(n)

22k|x|2k+1

[
k−1∑

l=0

(−1)k−l2k−lk!(k + l)!

(k − l)!l!
|x|k−l

[
Dk−lh

]
(1 + |x|) (4.3)

−
k−1∑

l=0

2k−lk!(k + l)!

(k − l)!l!
|x|k−l

[
Dk−lh

]
(1− |x|)

]

+
c(n)

22k|x|2k+1
(2k)! [h(1 + |x|)− h(1− |x|)]

or

(N ∗D∗∂tDh)(x) =
c(n)k!

2k|x|2k+1
([Lkh](1 + |x|)− [Lkh](1 − |x|)) , (4.4)

where we recall that Lk is the linear differential operator of order k, defined as

Lk =

k∑

l=0

(k + l)!

(k − l)!l!2l
(1− t)k−lDk−l

Thus Dh ∈ ker(N ∗D∗∂t) = range(DN ) if and only if [Lkh](1 + t) = [Lkh](1− t) for all t ∈ [0, 1]. This
is equivalent to saying that there exists f ∈ C∞

c (B) such that

D(tn−2Rf) = Dh.

Since D is a linear differential operator, it has a trivial kernel in the space of compactly supported
smooth functions on (0, 2). Thus, the above is equivalent to saying that h = tn−2Rf or g = Rf . �

Remark 4.1. The sufficiency part of Theorem 1.4 can also be proved similarly with minor changes.
We omit the proof.



RANGE CHARACTERIZATION OF SPHERICAL MEAN TRANSFORM 37

Proof of Theorem 1.8. Recall that when f has radial symmetry, we have (2.3):

Rf(p, t) =
ωn−1

ωn

1∫

−1

f
(√

1 + t2 + 2st
)
(1− s2)k ds.

Consider the change of variables u =
√
1 + t2 + 2st to get

Rf(p, t) =
ωn−1

ωn

1

t

1+t∫

|1−t|

uf(u)

(
1−

(
u2 − 1− t2

2t

)2
)k

du.

Choose F ∈ C∞
c ((0, 1)) such that supp(F ) ⊂ (ǫ, 1) and take f(t) = dm

dtmF (t) for any m ≥ 4k + 2. With
this choice of f , we have for t ∈ (1− ǫ, 1 + ǫ)

Rf(p, t) =
ωn−1

ωn

1

t

1∫

ǫ

u

(
dm

dum
F (u)

)(
1−

(
u2 − 1− t2

2t

)2
)k

du

due to the choice of support of F . Performing repeated integration by parts, we obtain thatRf(p, t) = 0
for all p ∈ S

n−1 and t ∈ (1− ǫ, 1 + ǫ). �

5. Further directions

• In this article, we have given a complete range characterization for the SMT in odd dimensions.
See also [33] for a related work on this subject. A direction of further research is the derivation
of simple range descriptions (e.g. for radial functions) in even dimensions. Once the range
conditions are obtained for radial functions, the case of general functions can probably be
handled by using the result for the radial case, similar to our approach presented in this paper.
Notice that our range conditions in odd dimensions are of a differential nature. Since the
operator is non-local in even dimensions, it is conceivable that the range conditions are also
non-local in even dimensions (perhaps of an integral nature).

• One of the results of this paper is a counterexample to UCP for SMT in odd dimensions. The
authors believe that the UCP (as introduced in this article) should hold in even dimensions,
while the interior problem (see [35]) should not have a unique solution there. The authors plan
to address these questions in a future work.

• An offshoot of the current work is the discovery of explicit inversion formulas for the SMT
that we study, similar in spirit to the works of Norton [37], Norton-Linzer [38], Xu-Wang [47]
and others based on Fourier series/spherical harmonics and Hankel transform. Our inversion
formulas are valid in all odd and even dimensions, and are simpler than some of the already
existing ones. We plan to report this work in an upcoming article.
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2002.

[32] Peter Kuchment and Leonid Kunyansky. Mathematics of thermoacoustic tomography. European J. Appl. Math.,
19(2):191–224, 2008.

[33] Peter Kuchment and Leonid Kunyansky. Observability for the wave equation and range description for the spherical
Radon transform (preliminary title). 2023. In preparation.

[34] Leonid A. Kunyansky. Explicit inversion formulae for the spherical mean Radon transform. Inverse Problems,
23(1):373–383, 2007.

[35] F. Natterer. The Mathematics of Computerized Tomography, volume 32 of Classics in Applied Mathematics. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Reprint of the 1986 original.



RANGE CHARACTERIZATION OF SPHERICAL MEAN TRANSFORM 39

[36] Linh V Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems and Imaging,
3(4):649–675, 2009.

[37] Stephen J Norton. Reconstruction of a two-dimensional reflecting medium over a circular domain: Exact solution.
The Journal of the Acoustical Society of America, 67(4):1266–1273, 1980.

[38] Stephen J Norton and Melvin Linzer. Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering
solutions for plane, cylindrical, and spherical apertures. IEEE Transactions on Biomedical Engineering, 28(2):202–
220, 1981.

[39] H. Rhee. A representation of the solutions of the Darboux equation in odd-dimensional spaces. Trans. Amer. Math.
Soc., 150:491–498, 1970.

[40] M. R. Riedel. Egorychev method and the evaluation of combinatorial sums. https://pnp.mathematik.uni-
stuttgart.de/iadm/Riedel/papers/egorychev.pdf.
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