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Abstract

We prove stability for a formally determined inverse problem for a hyperbolic PDE in one
or higher space dimensions with the coefficients dependent on space and time variables. The
hyperbolic operator has constant wave speed and we study the recovery of the first order and
zeroth order coefficients. We use a modification of the Bukhgeim-Klibanov method to obtain
our results.

1 Introduction

SupposeD is a bounded domain in Rn, n ≥ 1, with a smooth boundary and T > 0. Let a(x, t), c(x, t)
be smooth real valued functions on D × [0, T ] and b(x, t) = (b1(x, t), · · · , bn(x, t)) a smooth n-
dimensional real vector field on D × [0, T ]. Define the hyperbolic operator

La,b,c := (∂t − a)2 − (∇− b)2 + c (1.1)

= �− 2a∂t + 2b · ∇+ c− at +∇ · b+ a2 − b2. (1.2)

When it is clear from the context, we use L instead of La,b,c.

Let w(x, t) be the solution of the well-posed IBVP

La,b,cw = 0, (x, t) ∈ D × [0, T ] (1.3)

w(·, 0) = f, wt(·, 0) = g, on D (1.4)

w = h, on ∂D × [0, T ] (1.5)
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for f, g, h with appropriate regularity. For a given a, b, c, define the response operator

Λa,b,c : (f, g, h)→
[
w(·, T )|D, wt(·, T )|D, ∂νw|∂D×[0,T ]

]
; (1.6)

hence Λa,b,c(f, g, h) represents the boundary and final time response, of the acoustic medium with
acoustic properties (a, b, c), to the initial boundary input (f, g, h). So we have the forward map

Λ : (a, b, c)→ Λa,b,c,

whose injectivity and stability has been studied by several authors. This is an overdetermined
problem (when n > 1) because the distribution kernel of Λ depends on 2n parameters while a, b, c
depend on n + 1 parameters. Our goal is to study of the recovery of a, b, c from less (but slightly
different) data than Λa,b,c - we study a formally determined problem where the data depends only
on n+1 parameters. Before we state our goal, we first describe what is known about the injectivity
and stability of Λ type forward maps.

In general, Λ is not injective, due to gauge invariance (described later), and in such cases one
hopes to recover curl(a, b) and c or one studies special cases when a, b are known or c is known.
Below, injectivity and stability results for Λ type forward maps are to be understood in this sense.
We use the term Λ type forward maps because there are results in the literature with one or more
of the following:

• data is collected only on a part of the lateral boundary

• data is not collected on t = T

• there are no sources on t = 0

• the data is the far field pattern in the frequency domain, which in some sense is equivalent
to Λ but with t varying over (−∞,∞)

• the principal part of the operator is not the wave operator but a hyperbolic operator associated
with a non-constant velocity or even a Lorentzian metric.

While the inverse problems associated with Λ type forward maps are overdetermined problems,
there are considerable challenges dealing with some of these problems either because three coeffi-
cients are being determined simultaneously, or data is given only on a part of the lateral boundary
or the wave velocity is non-constant. The results we obtain are only for the constant velocity case,
though for a formally determined problem.

From domain of dependence arguments, it is clear that for hyperbolic operators with coefficients
dependent on x, t and measurements over a finite t interval [0, T ], to recover the coefficients on
D× [0, T ] one needs sources on D×{t = 0} and measurements on D×{t = T}, in addition to the
lateral boundary sources and measurements. So, for inverse problems with coefficients dependent
on x and t, with sources only on the lateral boundary and receivers/measurements only on the
lateral boundary, of the x, t domain, either one must know the coefficients in appropriate regions
contiguous with t = 0 and t = T , assume analyticity of the coefficients with respect to t, or data
measurements over infinitely long t intervals. The situation is different when the principal part of
the operator is not the wave operator (or coming from a Lorentzian metric) but the Schrödinger
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operator i∂t+ ∆ where waves travel with infinite speed or perhaps a fractional differential operator
which is non-local in nature. We do not describe the results for such operators.

For coefficients which depend on x, t, results on the injectivity of Λ type forward maps, for data
on infinite time intervals, may be found in, for example, [27, 31, 33, 28]. For the finite time interval
case, the injectivity of Λ type forward maps, but with coefficients known in certain regions near t = 0
and t = T or analytic in t, results may be found in, for example, [14, 26, 10, 11, 3, 5, 15, 18, 32, 12].
The stability of Λ has been studied extensively in, for example, [34, 29, 6, 30, 4, 8]. The results
mentioned here, for x, t dependent coefficients, are for over-determined problems and the stability
results, even for these over-determined problems, are of log-log type. There are better stability
results for the Schrödinger operator (infinite speed of propagation) with Holder stability (but not
Lipschitz stability), still for an over-determined problem - see [17].

We do not survey results for Λ type maps when the coefficients are independent of t - no sources
are needed on t = 0 and no measurements are needed on t = T . A brief survey of such results
may be found in [16]. Most of these results use generalizations of the Boundary Control Method
introduced by Belishev (see [1, 2]) or generalizations of geometric optics solutions for hyperbolic
PDEs introduced in [24], which were themselves imitations of similar (but harder to construct)
solutions for elliptic PDEs constructed by Sylvester and Uhlmann in [35].

We now describe results for formally determined inverse problems for hyperbolic PDEs.

For coefficients independent of t, there are uniqueness and stability results, for formally deter-
mined problems, based on the ideas introduced by Bukhgeim and Klibanov in [9] which had the
first such results in dimension n > 1. See [7] for a survey of such results and an exposition of the
significant modifications of the important ideas in [9]. The only drawback of these results is that
they require the initial source to be a positive (or negative) function throughout the domain (in x
space). Rakesh and Salo in [23, 22], for the case a = 0, b = 0 (recover c), avoided the use of posi-
tive initial sources, using instead the more natural incoming plane wave source, except one needed
data from two such experiments, corresponding to incoming plane waves coming from opposite
directions. These ideas were extended to obtain similar results for the operator with general a, b, c
or the operator associated with a Lorentzian metric (with restrictions) in [20, 21]. The articles
[23, 22, 20, 21] contain uniqueness and Lipschitz stability results for these problems.

We also note the work in [19], a coefficient recovery problem for a semilinear hyperbolic PDE,
with the coefficient independent of t and the data consisting of a weighted average of lateral bound-
ary measurements. This seems to be an under-determined inverse problem but the non-linearity of
the PDE is crucial for this result. The article [13] also contains a uniqueness (and reconstruction)
result for a formally determined a, b, c recovery problem with the coefficients dependent on x and t.
They use a single boundary source h, constructed as the infinite sum of a combination of sources,
each generating a solution travelling along a ray for the hyperbolic PDE, and the rays associated
with these solutions forming a dense subset of the x, t domain. The challenge is to build the source
h so that the data from the h source can be separated into the data contributions from the sources
in the sum. We believe such a source h on the lateral boundary would have support consisting of
the full lateral boundary.
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The articles [23, 22] were attempts at (and have come close to) solving the long-standing open
Fixed Angle Scattering inverse problem. There are other long-standing formally determined open
problems for hyperbolic PDEs (with coefficients independent of t) such as the Back-scattering
Problem, where the results are much weaker than the result for the Fixed Angle Scattering Problem.
We do not survey the results for these two problems as the introductions to [21, 23, 25] have a good
survey of the results.

Here we study a formally determined inverse problem with the coefficients a, b, c dependent on
x, t. We prove uniqueness (up to gauge) and Lipschitz stabilty, using the modifications of the ideas
of Bukhgeim and Klibanov in [9], an idea in [21] and our new idea for problems with coefficients
dependent on x, t. Our results have one weakness - the problem must be posed in the full space
Rn × (−∞, T ] and do not work for space time cylinders bounded bases such as D × (−∞, T ]

Let B denote the open unit ball in Rn, n ≥ 1, T > 0 and suppose a(x, t), bi(x, t), c(x, t),
i = 1, · · · , n are compactly supported smooth functions on Rn ×R. If ω is a unit vector in Rn and
τ ∈ R, let U(x, t;ω, τ) be the solution of the IVP

LU = 0, on Rn × R, (1.7)

U(x, t;ω, τ) = H(t− τ − x · ω), x ∈ Rn, t� 0 (1.8)

and let V (x, t;ω, τ) be the solution of the IVP

LV = 0, on Rn × R, (1.9)

V (x, t;ω, τ) = δ(t− τ − x · ω), x ∈ Rn, t� 0. (1.10)

So U, V are the disturbances in the medium caused by two types of impulsive incoming plane waves.
Here τ is the time the incoming plane wave reaches the origin; τ may also be regarded as a time
delay. Given T > 0, define the map

F : (a, b, c)→ [U,Ut, V, Vt](x, T ;ω, τ)|x∈Rn,ω∈Ω,τ∈(−∞,T+1]

mapping the medium properties (a, b, c) of the region Rn × (−∞, T ], to the final time medium
response, to incoming plane waves, coming from a finite set of directions ω in the finite set Ω of
unit vectors in Rn, with delays τ ∈ (−∞, T +1]. Our goal is to study the injectivity and stability of
F. We note the data set for our inverse problem (associated with F) depends on n+ 1 parameters
and our unknown functions (a, b, c) depend on n + 1 parameters; hence our problem is formally
determined.

We introduce definitions used throughout the article. Given a unit vector ω ∈ Rn, a τ ∈ R and
a T > 0, we define the wedge shaped region (see Figure 1.1)

Qω,τ = {(x, t) ∈ Rn × R : τ + x · ω ≤ t ≤ T}

and its higher and lower boundary

Hω,τ = Qω,τ ∩ {t = T} Lω,τ = Qω,τ ∩ {t = τ + x · ω}.
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t=T

t=τ+x·ω
x

t

Qω,τ

Lω,τ

Hω,τ

Figure 1.1: The wedge shaped region and its boundary

We suppress the T dependence of these sets as T will not vary. For any submanifold M of Rn ×R
and a function w on M we define the weighted norms

‖w‖1,M,σ =

(∫
M
e2σt(|∇Mw|2 + σ2|w|2)

)1/2

, ‖w‖0,M,σ =

(∫
M
e2σt|w|2

)1/2

,

where ∇M is the gradient on the manifold M made up only of derivatives in directions tangential
to M . We will also use ‖w‖1,M , ‖w‖0,M for the standard H1 and L2 norms on M .

Given compactly supported smooth functions a, bj , c on Rn × R, we define the function

α(x, t;ω) := exp

(∫ 0

−∞
(a+ ω · b)(x+ sω, t+ s) ds

)
, (x, t) ∈ Rn × R. (1.11)

Note that α(x0, t0;ω) is determined by the values of a, b in the region t ≤ t0.

We start with the well-posedness of the IVP associated with U and V .

Proposition 1.1 (The Heaviside function solution). Suppose a, bi, c, i = 1, · · · , n, are compactly
supported smooth functions on Rn × R, ω a unit vector in Rn and τ ∈ R. The IVP (1.7) - (1.8)
has a unique distributional solution

U(x, t;ω, τ) = u(x, t;ω, τ)H(t− τ − x · ω), (x, t) ∈ Rn × R

where u(x, t;ω, τ) is a smooth function in the region t ≥ τ + x · ω and is the unique solution of the
characteristic IBVP

La,b,cu = 0, x ∈ Rn, τ + x · ω ≤ t, (1.12)

u(x, t;ω, τ) = α(x, t;ω), x ∈ Rn, t = τ + x · ω, (1.13)

u(x, t;ω, τ) = 1, x ∈ Rn, τ + x · ω ≤ t� 0. (1.14)

Further, given T > 0 if ‖[a, b, c]‖CN (Qω,τ ) ≤M for N = 5 + [n/2] then

‖u‖C3(Qω,τ ) ≤ C,

where C depends on M and the support of a, b, c.
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A similar result is true for V (x, t;ω, τ).

Proposition 1.2 (The delta function solution). Suppose a, bi, c, i = 1, · · · , n, are compactly sup-
ported smooth functions on Rn × R, ω a unit vector in Rn and τ ∈ R. The IVP (1.9) - (1.10) has
a unique distributional solution

V (x, t;ω, τ) = α(x, t;ω, τ) δ(t− τ − x · ω) + v(x, t;ω, τ)H(t− τ − x · ω), (x, t) ∈ Rn × R

where v(x, t;ω, τ) is a smooth function on the region t ≥ τ + x · ω and is the unique solution of the
characteristic IBVP

La,b,cv = 0, t ≥ τ + x · ω, (1.15)

v(x, t;ω, τ) = 0, t� 0 (1.16)

vt + ω · ∇v − (a+ ω · b)v = −1

2
La,b,cα, t = τ + x · ω. (1.17)

Further, given T > 0 if ‖[a, b, c]‖CN (Qω,τ ) ≤M for N = 7 + [n/2] then

‖v‖C3(Qω,τ ) ≤ C,

where C depends on M and the support of a, b, c.

While V = −∂τU , the relationship between u and v may be a little more complicated because
the domains of u, v depend on τ .

The inverse problem has a gauge invariance. If φ(x, t) is a smooth function on Rn×R then, for
any smooth function f(x, t) on Rn × R, we have

(∂t − a− φt)(eφf) = eφ(∂t − a)f, (∇− b−∇φ)(eφf) = eφ(∇− b)f (1.18)

implying
La+φt,b+∇φ,c(e

φf) = eφLa,b,cf ; (1.19)

in particular

La+φt,b+∇φ,c(e
φU) = eφLa,b,cU = 0, La+φt,b+∇φ,c(e

φV ) = eφLa,b,cV = 0,

Hence, if φ is compactly supported then eφU and eφV are the Heavisde function and delta function
solutions corresponding to the triple (a+ φt, b+∇φ, c). So, if we also have φ(·, T ) = 0, then

F(a, b, c) = F(a+ φt, b+∇φ, c).

Actually our data on t = T will also involve time derivatives of U, V so, for gauge invariance, we
will also need some time derivatives of φ to be zero at t = T . We will be specific below.

We state our principal results next. We have seen in (1.2) that La,b,c can also be written in the
form

La,b,c = �− 2a∂t + 2b · ∇+ q
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where
q := c− at +∇ · b+ a2 − b2. (1.20)

We can regard the operator La,b,c as determined by the functions a, bi, c or by the functions a, bi, q.
We use both points of view below - the context will clarify the point of view in play.

Our work has two new ideas, perhaps one more significant than the other. Our most significant
idea allows us to obtain Lipschitz stability for a formally determined x, t dependent coefficient
problem as compared to the logarithmic stability results for overdetermined problems (though on
bounded domains) in the literature. This is showcased in its simplest form in the study of the less
complicated problem of recovering q given a, b. Our second idea is about separating the estimates
on c from the estimates on a, b when we prove stability for the a, b, c problem.

We start with the stability result about recovering q, given a, b.

Theorem 1.3 (Stability for the q recovery problem, given a, b). Suppose T > 0 and a(x, t), bi(x, t),
i = 1, · · · , n, are compactly supported smooth functions on Rn× [0, T ] and ω is a unit vector in Rn.
If q, q́ are compactly supported smooth functions on Rn × (−∞, T ] with support in B × [0, T ] and
‖[q, q́, a, b]‖C7+[n/2] ≤M then

‖q − q́‖L2 4
∫ T+1

−1
‖(v − v́)(·, T ;ω, τ)‖1,Hω,τ + ‖(vt − v́t)(·, T ;ω, τ)‖0,Hω,τ dτ.

Here v, v́ are the functions associated with (a, b, q) and (a, b, q́) in Proposition 1.2 and the constant
depends on M and the support of a, b, q, q́.

The proof of this theorem presents one of our ideas, uncluttered by the complications appearing
in the proofs of the other theorems.

Next we state a stability result about recovering a, b if q is known. Note there is no gauge
invariance if q is known. Below e1, · · · , en is the standard basis for Rn.

Theorem 1.4 (Stability for the a, b recovery problem, given q). Suppose T > 0 and q(x, t) is a
smooth compactly supported smooth functions on Rn × [0, T ]. If a, b, á, b́ are compactly supported
smooth functions on Rn× (−∞, T ] with support in B× [0, T ] and ‖[a, b, q, á, b́, q́]‖C7+[n/2] ≤M then

‖[a− á, b− b́]‖L2 4
∑
ω

∫ T+1

−1
‖(u− ú)(·, T ;ω, τ)‖1,Hω,τ + ‖(ut − út)(·, T ;ω, τ)‖0,Hω,τ dτ

where ω takes the values −en and e1, · · · , en. Here u, ú are the functions associated with (a, b, q)
and (á, b́, q) in Proposition 1.1. The constant depends on M and the supports of a, b, á, b́, q.

Next we have a uniqueness result about recovering (a, b, c). Noting the gauge invariance men-
tioned earlier in the introduction, the most we can hope to recover is curl(a, b) and c. However,
for φ(x, t) to be a gauge we needed φ(·, T ) = 0 (and φt(·, T ) = 0 because of the data we use in our
theorems) - this is reflected in the hypothesis of the next theorem.
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Theorem 1.5 (Uniqueness for the curl(a, b) and c recovery problem). Suppose T > 0 and a, b, c, á, b́, ć
are compactly supported smooth functions on Rn × (−∞, T ] with support in B × [0, T ]. If

[u, ut](x, T, ω, τ) = [ú, út](x, T ;ω, τ), ∀x ∈ Hω,τ , τ ∈ [−1, T + 1], ω = ei, i = 1, · · · , n,
[v, vt](x, T, e

n, τ) = [v́, v́t](x, T ; en, τ), ∀x ∈ Hω,τ , τ ∈ [−1, T + 1],

and ∫ T

−∞
(a+ bn)(x+ sen, s) ds =

∫ T

−∞
(á+ b́n)(x+ sen, s) ds, ∀x ∈ Rn∫ T

−∞
(at + bnt )(x+ sen, s) ds =

∫ T

−∞
(át + b́nt )(x+ sen, s) ds, ∀x ∈ Rn,

then

c = ć, d

(
adt+

n∑
i=1

bidxi

)
= d

(
ádt+

n∑
i=1

b́idxi

)
.

Here u, v, ú, v́ are the functions associated with (a, b, c) and (á, b́, ć) in Propositions 1.1 and 1.2.

This result is obtained by combining our most significant idea with an idea in [21] about a
uniqueness problem for a time independent coefficient determination problem. We do not know
how to prove a similar uniqueness result when all the three coefficients a, b, q are to be recovered -
that problem does not have gauge invariance.

Our final result is a stability result for the (a, b, c) recovery problem. Again, due to the gauge
invariance, we can only expect to recover curl(a, b) and c. To obtain stability we need more data
than was needed for the uniqueness result in Theorem 1.5. We define ψ(x, t) to be the solution of
the IVP

�ψ = ∇ · b− at + c (x, t) ∈ Rn × (−∞, T ] (1.21)

ψ(·, t) = 0, t� 0. (1.22)

Theorem 1.6 (Stability for curl(a, b) and c recovery problem). Suppose T > 0 and a, b, c, á, b́, ć
are compactly supported smooth functions on Rn × (−∞, T ] with support in B × [0, T ].
If ‖[a, b, c, á, b́, ć]‖C7+[n/2] ≤M then

‖[c− ć, dη − dή]‖L2 4
∑
ω

∫ T+1

−1
‖(u− ú)(·, T ;ω, τ)‖2,Hω,τ + ‖(ut − út)(·, T ;ω, τ)‖1,Hω,τ dτ

+
∑
ω

∫ T+1

−1
‖(utt − útt)(·, T ;ω, τ)‖0,Hω,τ dτ

+
∑
ω

∫ T+1

−1
‖(v − v́)(·, T ;ω, τ)‖1,Hω,τ + ‖(vt − v́t)(·, T ;ω, τ)‖0,Hω,τ dτ

+ ‖(ψ − ψ́)(·, T )‖2,Rn + ‖∂t(ψ − ψ́)(·, T )‖1,Rn + ‖∂2
t (ψ − ψ́)(·, T )‖0,Rn ,
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with ω taking the values ±ei, i = 1, · · · , n. Here

η = adt+

n∑
i=1

bidxi, ή = ádt+

n∑
i=1

b́idxi,

u, v, ú, v́ are the functions associated with (a, b, c) and (á, b́, ć) in Propositions 1.1 and 1.2 and the
constant depends on M and the supports of a, b, c, á, b́, ć.

The information about ψ is needed for the stability result in Theorem 1.6. This information
corresponds to having (for odd n) the integral of ∇ · b − at + c on all light cones with vertices on
t = T and related quantities. For the even n case, it would be a weighted integral on such solid
cones.

The above theorems used the traces on t = T of u, v and their time derivatives, for τ ∈ [−1, T+1].
There is no information about [a, b, c] in u(·, ·, ·, τ) and v(·, ·, ·, τ) for τ < −1 because u, v are zero
since the support of [a, b, c] is in B × [0, T ].

The Carleman estimate with explicit boundary terms in Proposition 6.1 (in Section 6) plays in
important role in the proofs of the theorems. It is perhaps of mild interest that one can use the
weight t in the Carleman estimate for the wave operator even though this weight is not strongly
pseudo-convex. The proofs of our theorems do not require this particular weight; any increasing
function of t, such as the traditional Carleman weight eλt for some large λ, would be sufficient for
use in our theorems.

x

t

t=T

B t=0

t=τ+x·ω

H
~
ω,τ

Sω,τ

Figure 1.2: The cylindrical domain and its boundary

We can obtain similar results if our data consists of the lateral boundary trace and final time
trace on a bounded domain, that is, if we study the injectivity and stability of the map

(a, b, c)→
{[
∂βx,tu, ∂

β
x,tv
]
H̃ω,τ

,
[
∂βx,tu, ∂

β
x,tv
]
Sω,τ

}
ω∈Ω, τ∈(−∞,T+1], |β|≤2

where Ω = {±ei : i = 1, · · · , n} and (see Figure 1.2)

H̃ω,τ =
(
B × {t = T}

)
∩Qω,τ Sω,τ = (∂B × (−∞, T ]) ∩Qω,τ .
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To accomplish this we would replace the Carleman estimate for the region Qω,τ in Proposition 6.1
by a Carleman estimate for the region (B × R) ∩ Qω,τ and the revised proofs would be almost
identical to the proofs in this article. The proof of the modified Carleman estimate also would be
almost identical to the proof of Proposition 6.1.

The one weakness of our results is that we cannot adapt our method to the situation where
the forward problem is over a bounded domain D × (−∞, T ] rather than over the free space
Rn × (−∞, T ].

We introduce definitions used throughout the article. We define the differences

ū = u− ú, v̄ := v − v́, ā := a− á, b̄ := b− b́, c̄ = c− ć, q̄ = q − q́.

Sometimes we suppress writing the a, b, c dependence of La,b,c and just use L and Ĺ where Ĺ

corresponds to á, b́, ć. We also have the corresponding functions α and ά defined in (1.11).

We also note that
(∂t + ω · ∇ − (a+ ω · b))α(x, t;ω) = 0 (1.23)

as seen from

α−1(αt + ω · ∇α)(x, t;ω) =

∫ 0

−∞
((∂t + ω · ∇)(a+ ω · b))(x+ sω, t+ s) ds

=

∫ 0

−∞

d

ds
((a+ ω · b)(x+ sω, t+ s)) ds

= (a+ ω · b)(x, t).

2 Proof of Theorem 1.3

In this theorem a = á, b = b́. Since ω is fixed, we suppress the dependence on ω.

Using (1.15), (1.17), its version for á, b́, ć and that a = á, b = b́, the function v̄ satisfies

Lv̄ = −q̄v́, on Qτ ,

v̄ = 0, t� 0,

2(∂t + ω · ∇ − (a+ ω · b))v̄ = −q̄α, on Lτ .

Applying the Carleman estimate in Proposition 6.1 to v̄ on the region Qτ we have

σ‖v̄‖21,σ,Lτ 4 ‖Lv̄‖
2
0,σ,Qτ + σ‖v̄‖21,σ,Hτ + σ‖∂tv̄‖20,σ,Hτ .

Since α is positive and bounded away from 0, on Lτ we have

|q̄| 4 |q̄α| = 2|(∂t + ω · ∇ − (a+ ω · b))v̄| 4 |v̄t|+ |∇v̄|+ |v̄|
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while on Qτ
|Lv̄| = |q̄v́| 4 |q̄|,

hence
σ‖q̄‖20,σ,Lτ 4 ‖q̄‖

2
0,σ,Qτ + σ‖v̄‖21,σ,Hτ + σ‖∂tv̄‖20,σ,Hτ . (2.1)

We integrate (2.1) w.r.t τ over [−1, T + 1). Noting that q̄ is supported on B × [0, T ], we define
q̄ = 0 for t > T for convenience and Lτ to be the set t = τ + x · ω ≤ T . The LHS of (2.1) is

σ

∫ T+1

−1

∫
Rn,t=τ+x·ω

e2σt |q̄(x, t)|2 dx dτ = σ

∫
R

∫
Rn×R

e2σt |q̄(x, t)|2δ(t− τ − x · ω) dx dt dτ

= σ

∫
Rn×R

∫
R
e2σt |q̄(x, t)|2δ(t− τ − x · ω) dτ dx dt

= σ

∫
Rn×R

e2σt |q̄(x, t)|2 dx dt

= σ‖q̄‖2
0,σ,B×[0,T ]

.

The integral w.r.t τ over [−1, T + 1], of the RHS of (2.1), consists of the ‘data part’

‘data’ = σ

∫ T+1

−1
‖v̄‖21,σ,Hτ + σ‖∂tv̄‖20,σ,Hτ dτ

and (using the support of q̄)∫ T+1

−1
‖q̄‖20,σ,Qτ ≤

∫ T+1

−1
‖q̄‖2

0,σ,B×[0,T ]
4 ‖q̄‖2

0,σ,B×[0,T ]
.

Combining the two pieces we have

σ‖q̄‖2
0,σ,B×[0,T ]

4 ‖q̄‖2
0,σ,B×[0,T ]

+ ‘data’

which gives us the estimate in Theorem 1.3 if we choose σ large enough.

3 Proof of Theorem 1.4

Here q = q́. The proof is similar to the proof of theorem 1.3 except one uses the solution U .

We start with an intermediate estimate for a fixed ω, τ . We suppress the dependence on ω, τ
during the derivation of this intermediate estimate. Using (1.12), (1.13) and their analogs for á, b́
and that q = q́, ū satisfies

Lū = 2āút − 2b̄ · ∇ú, on Q,

ū = 0, t� 0,

ū = α− ά, on L.

11



Applying the Carleman estimate in Proposition 6.1 to ū on the region Q, we obtain

σ‖ū‖21,σ,L 4 ‖[ā, b̄]‖20,σ,Q + σ‖ū‖21,σ,H + σ‖∂tū‖20,σ,H . (3.1)

Now, on L, using (1.23) we have

(∂t + ω · ∇ − (a+ ω · b))(α− ά) = −(∂t + ω · ∇ − (a+ ω · b))ά
= −(∂t + ω · ∇ − (á+ ω · b́))ά+ (ā+ ω · b̄)ά
= (ā+ ω · b̄)ά.

Since ά is positive and bounded away from zero we have

|ā+ ω · b̄| 4 |(∂t + ω · ∇ − (a+ ω · b))(α− ά)|.

Using this in (3.1) we obtain

σ‖ā+ ω · b̄‖20,σ,Lτ 4 ‖[ā, b̄]‖
2
0,σ,Qτ + σ‖ū‖21,σ,Hτ + σ‖∂tū‖20,σ,Hτ .

Integrating this w.r.t τ over [−1, T + 1] and repeating the argument in the proof of Theorem
1.3, we obtain

σ‖ā+ ω · b̄‖2
0,σ,B×[0,T ]

4 ‖[ā, b̄]‖2
0,σ,B×[0,T ]

+ σ

∫ T+1

−1
‖ū‖21,σ,Hω,τ + ‖ūt‖20,σ,Hω,τ dτ. (3.2)

Noting that
2ā = (ā+ enb̄) + (ā− enb̄)

and
ei · b̄ = (a+ ei · b̄)− ā

we obtain

σ‖[ā, b̄]‖2
0,σ,B×[0,T ]

4 ‖[ā, b̄]‖2
0,σ,B×[0,T ]

+ σ
∑
ω

∫ T+1

−1
‖ū‖21,σ,Hω,τ + ‖ūt‖20,σ,Hω,τ dτ,

where ω takes the values −en and e1, · · · , en. The theorem follows if we choose σ large enough.

4 Proof of Theorem 1.5

The proof proceeds as in the proofs of Theorems 1.3 and 1.4 but using both the U and the V
solution. However, we need to add an idea from [21] to separate c from a, b.

We define

φ(x, t) = −
∫ 0

−∞
(a+ en · b)(x+ sen, t+ s) ds, φ́(x, t) = −

∫ 0

−∞
(á+ en · b́)(x+ sen, t+ s) ds;

12



we are given that

[u, ut](·, T ;ω, τ) = [ú, út](·, T ;ω, τ) on Hω,τ , ∀τ ∈ [−1, T + 1], ω = ei, i = 1, · · · , n,
[v, vt](·, T ; en, τ) = [v́, v́t](·, T ; en, τ) on Hω,τ , ∀τ ∈ [−1, T + 1],

[φ, φt](·, T ) = [φ́, φ́t](·, T ), on Rn.

Hence

[eφu, (eφu)t](·, T ;ω, τ) = [eφ́ú, (eφ́ú)t](·, T ;ω, τ) on Hω,τ ∀τ ∈ [−1, T + 1], ω = ei, i = 1, · · · , n

[eφv, (eφv)t](·, T ; en, τ) = [eφ́v́, (eφ́v́)t](·, T ; en, τ) on Hω,τ , ∀τ ∈ [−1, T + 1].

The two sides correspond to the data for the coefficients [a + φt, b +∇φ, c] and [á + φ́t, b́ +∇φ́, ć]
so we work with this new set of coefficients. What we gain from this new set of coefficients is that

((a+ φt) + en · (b+∇φ))(x, t) = (a+ en · b)(x, t) + (∂t + en · ∇)φ(x, t)

= (a+ en · b)(x, t)− (∂t + en · ∇)

∫ 0

−∞
(a+ en · b)(x+ sen, t+ s) ds

= (a+ en · b)(x, t)−
∫ 0

−∞

d

ds
((a+ en · b)(x+ sen, t+ s)) ds

= 0.

Further, [a, b] and [a+φt, b+∇φ] have the same curl. So to prove our theorem it is enough to show
that if we have [a, b, c] and [á, b́, ć] such that

[u, ut](·, T ;ω, τ) = [ú, út](·, T ;ω, τ) on Hω,τ , ∀τ ∈ [−1, T + 1], ω = ei, i = 1, · · · , n,
[v, vt](·, T ; en, τ) = [v́, v́t](·, T ; en, τ) on Hω,τ , ∀τ ∈ [−1, T + 1],

and
a+ en · b = 0, á+ en · b́ = 0 on Rn × (−∞, T ]

then
[a, b, c] = [á, b́, ć];

actually we show
[a, b, q] = [á, b́, q́]

which then implies c = ć.

Summarizing, we are given that

[ū, ūt](·, T ;ω, τ) = 0 on Hω,τ , ∀τ ∈ [−1, T + 1], ω = ei, i = 1, · · · , n, (4.1)

[v̄, v̄t](·, T ; en, τ) = 0 on Hω,τ , ∀τ ∈ [−1, T + 1], (4.2)

and
a+ en · b = 0, á+ en · b́ = 0 on Rn × (−∞, T ]. (4.3)

We have to show that
[a, b, q] = [á, b́, q́].
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Note that the supports of the new a, b, c, á, b́, ć may not be in B× [0, T ] but will still be in D× [0, T ]
for some bounded region D in Rn.

Using (1.12), (1.13) and its analogs for á, b́, ć, the function ū satisfies

Lū = 2āút − 2b̄ · ∇ú− q̄ú, on Q,

ū = 0, t� 0,

ū = α− ά, on L.

Repeating the argument in the proof of Theorem 1.4, the only difference being that Lū now has a
q̄ term on the RHS and that (4.1) holds, one obtains

σ‖[ā, b̄]‖0,σ,D×[0,T ] 4 ‖[ā, b̄, q̄]‖0,σ,D×[0,T ]. (4.4)

Next, we take ω = en and we suppress writing the explicit dependence on en. Using (1.15),
(1.16) and its analogs for á, b́, ć, the function v̄ satisfies

Lv̄ = 2āv́t − 2b̄ · ∇v́ − q̄v́ on Q,

v̄ = 0, t� 0.

Applying the Carleman estimate in Proposition 6.1 to v̄ in the region Q and noting (4.2), we have

σ‖v̄‖21,σ,Lτ 4 ‖Lv̄‖
2
0,σ,Qτ 4 ‖[ā, b̄, q̄]‖

2
0,σ,Qτ . (4.5)

In this estimate ω = en and from our discussion above we know that α = 1 and ά = 1 in this case.
So, on L, using (1.17) and its equivalent for [á, b́, ć], we have

2(∂t + ω · ∇ − (a+ ω · b))(v̄) = 2(∂t + ω · ∇ − (a+ ω · b))(v − v́)

= −Lα− 2(∂t + ω · ∇ − (á+ ω · b́))v́ + (ā+ ω · b̄)v́
= −Lα+ Ĺά+ (ā+ ω · b̄)v́
= −q̄ + (ā+ ω · b̄)v́
= −q̄.

Using this in (4.5) we obtain

σ‖q̄‖20,σ,Len,τ 4 ‖[ā, b̄, q̄]‖
2
0,σ,Qen,τ

. (4.6)

Integrating this over τ ∈ [−1, T + 1] and using the arguments used in the proofs of the earlier
theorems we obtain

σ‖q̄‖0,σ,D×[0,T ] 4 ‖[ā, b̄, q̄]‖0,σ,D×[0,T ].

Combining this with (4.4) we obtain

σ‖[ā, b̄, q̄]‖0,σ,D×[0,T ] 4 ‖[ā, b̄, q̄]‖0,σ,D×[0,T ],

so taking σ large enough we obtain ā = 0, b̄ = 0, q̄ = 0; hence (a, b) = (á, b́) and c = ć. However
these a, b, á, b́ are the φ modified versions of the old a, b, á, b́ so we obtain

d

(
adt+

n∑
i=1

bidxi

)
= d

(
ádt+

n∑
i=1

b́idxi

)
for the older a, b, á, b́. Of course we have already shown c = ć.
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5 Proof of Theorem 1.6

From the introduction we know that if u, v are the solutions associated with the coefficients [a, b, c]
then eψu, eψv are the solutions associated with the coefficients [a + ψt, b +∇ψ, c]. Further, using
|es − 1| ≤ eM |s| for all s ∈ [−M,M ] we have

|eψw − eψ́ẃ| ≤ |eψw − eψẃ|+ |eψẃ − eψ́ẃ|

4 |w − ẃ|+ |eψ−ψ́ − 1|
4 |w − ẃ|+ |ψ − ψ́|.

Similar estimates hold for the first and second order derivatives of eψw − eψ́ẃ. Further [a, b]
and [a + ψt, b + ∇ψ] have the same curl so we may assume we are working with the coefficients
[a+ ψt, b+∇ψ, c]. Now

c− (a+ ψt)t +∇ · (b+∇ψ) = c− at +∇ · b−�ψ = 0.

So it is enough to prove Theorem 1.6 with the assumption that

c− at +∇ · b = 0, ć− át +∇ · b́ = 0; (5.1)

note this also implies ψ = 0, ψ́ = 0.

Given the unit vector ω, we define the orthogonal decompositions

∇ = ∇ω +∇⊥ω , b = bω + b⊥ω

where

∇ω := ω(ω · ∇), ∇⊥ω := ∇− ω(ω · ∇), bω := (ω · b)ω, b⊥ω := b− (ω · b)ω.

Note that

∇ω · ∇⊥ω = 0 = ∇⊥ω · ∇ω, ω · ∇⊥ω = 0, bω · ∇⊥ω = 0 = ∇⊥ω · bω, b⊥ω · ∇ω = 0 = ∇ω · b⊥ω .

We obtain some intermediate estimates and, for convenience, temporarily we suppress the depen-
dence on τ .

Estimate from the U solution.

Using (5.1), we have

L = �− 2a∂t + 2b · ∇+ a2 − b2, Ĺ = �− 2á∂t + 2b́ · ∇+ á2 − b́2;

hence, from (1.12), (1.13), we have

Lū = 2āút − 2b̄ · ∇ú+ ((b+ b́)b̄− (a+ á)ā)ú, on Qω, (5.2)

ū = 0, t� 0, (5.3)

ū = α− ά, on Lω. (5.4)
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So Proposition 6.1 applied to ū in the region Qω gives us

‖ū‖21,σ,Qω + ‖α− ά‖21,σ,Lω 4
1

σ
‖[ā, b̄]‖20,σ,Qω + ‖ū‖21,σ,Hω + ‖∂tū‖20,σ,Hω , (5.5)

Next, we obtain higher order estimates by differentiating (5.2) - (5.4), keeping in mind that ∇⊥ω
and ∂t + ω · ∇ span the tangent space to Lω.

We have

L(∇⊥ω ū) = ∇⊥ω (2āút − 2b̄ · ∇ú+ ((b+ b́)b̄− (a+ á)ā)ú) + [L,∇⊥ω ]ū, on Qω

∇⊥ω ū = 0, t� 0

∇⊥ω ū = ∇⊥ω (α− ά), on Lω,

so, in Qω,

|L(∇⊥ω ū)| 4 |[ā, b̄,∇ā,∇b̄, āt, b̄t]|+ |[ū,∇ū, ∂tū]|.

Hence applying Proposition (6.1) to ∇⊥ω ū we obtain

‖∇⊥ω (α− ά)‖21,σ,Lω 4
1

σ
‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖20,σ,Qω +

1

σ
‖ū‖21,σ,Qω

+ ‖∇⊥ω ū‖21,σ,Hω + ‖∂t∇⊥ω ū‖20,σ,Hω . (5.6)

We repeat the argument used to obtain (5.6) with differentiation w.r.t ∂t + ω · ∇ replacing differ-
entiation w.r.t ∇⊥ω . Noting that ∂t + ω · ∇ is also tangential to Lω, we obtain

‖(∂t + ω · ∇)(α− ά)‖21,σ,Lω 4
1

σ
‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖20,σ,Qω +

1

σ
‖ū‖21,σ,Qω

+ ‖[∇ū, ∂tū]‖21,σ,Hω + ‖∂2
t ū‖20,σ,Hω . (5.7)

Using (5.5), (5.6), (5.7), for σ large enough, we obtain

‖(∂t + ω · ∇)(α− ά)‖21,σ,Lω + ‖∇⊥ω (α− ά)‖21,σ,Lω + ‖α− ά‖21,σ,Lω

4
1

σ
‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖20,σ,Qω + ‖[ū,∇ū, ∂tū]‖21,σ,Hω + ‖∂2

t ū‖20,σ,Hω . (5.8)

We use (5.8) to estimate ā, b̄. From (1.23)

(∂t + ω · ∇ − (a+ ω · b))(α− ά) = −(∂t + ω · ∇ − (a+ ω · b))ά
= −(∂t + ω · ∇ − (á+ ω · b́))ά+ (ā+ ω · b̄)ά
= (ā+ ω · b̄)ά, (5.9)

and ά is positive and bounded away from zero. Hence

|ā+ ω · b̄| 4 |(∂t + ω · ∇)(α− ά)|+ |α− ά|. (5.10)
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Differentiating (5.9) w.r.t ∇⊥ω and noting that ∇⊥ω commutes with ∂t + ω · ∇, we obtain

|∇⊥ω (ā+ ω · b̄)| 4 |ā+ ω · b̄|+ |∇⊥ω (∂t + ω · ∇)(α− ά)|+ |∇⊥ω (α− ά)|+ |α− ά|. (5.11)

Differentiating (5.9) w.r.t ∂t + ω · ∇, we obtain

|(∂t + ω · ∇)(ā+ ω · b̄)| 4 |ā+ ω · b̄|+ |(∂t + ω · ∇)2(α− ά)|+ |(∂t + ω · ∇)(α− ά)|
+ |α− ά|. (5.12)

Since ∇⊥ω and ∂t + ω·]∇ are tangential to Lω, using (5.10), (5.11), (5.12) and (5.8), we conclude

‖[(∂t+ω · ∇)(ā+ ω · b̄), ∇⊥ω (ā+ ω · b̄), ā+ ω · b̄]‖20,σ,Lω + ‖[∇⊥ω (α− ά), α− ά]‖21,σ,Lω

4
1

σ
‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖20,σ,Qω + ‖[ū,∇ū, ∂tū]‖21,σ,Hω + ‖ūtt‖20,σ,Hω , (5.13)

for large enough σ.

Estimate from the V solution.

Using (1.15), (1.16) and its version for á, b́, ć, the function v̄ satisfies

Lv̄ = 2āv́t − 2b̄ · ∇v́ + ((b+ b́)b̄− (a+ á)ā)v́, on Qω

v̄ = 0, t� 0.

Hence, applying Proposition (6.1) to v̄ over the region Qω, we obtain

‖v̄‖21,σ,Lω 4
1

σ
‖[ā, b̄]‖20,σ,Qω + ‖v̄‖21,σ,Hω + ‖∂tv̄‖20,σ,Hω . (5.14)

On Lω,

2(∂t + ω · ∇ − (a+ ω · b))v = −Lα, 2(∂t + ω · ∇ − (á+ ω · b́))v́ = −Ĺά,

hence

2(∂t + ω · ∇ − (a+ ω · b))(v̄) = 2(∂t + ω · ∇ − (a+ ω · b))(v − v́)

= −Lα− 2(∂t + ω · ∇ − (á+ ω · b́))v́ + 2(ā+ ω · b̄)v́
= −Lα+ Ĺά+ 2(ā+ ω · b̄)v́

implying
|(∂t + ω · ∇ − (a+ ω · b))(v̄)| < |Lα− Ĺά| − |[ā, b̄]|

which used in (5.14) gives us

‖Lα− Ĺά‖20,σ,Lω 4 ‖[ā, b̄]‖
2
0,σ,Lω +

1

σ
‖[ā, b̄]‖20,σ,Qω + ‖v̄‖21,σ,Hω + ‖∂tv̄‖20,σ,Hω . (5.15)

We need a different representation for Lα− Ĺά. We claim

Lα = ((at −∇ω · bω) + ω · (bt −∇a))α+∇⊥ω
2
α− 2b⊥ω · ∇⊥ωα+ b⊥ω

2
α, (5.16)
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provided c− at +∇ · b = 0 - we postpone the proof of (5.16) to the end of this section. Then

Lα− Ĺά =
(
(āt −∇ω · b̄ω) + ω · (b̄t −∇ā)

)
α

+
(

(át −∇ω · b́ω) + ω · (b́t −∇á)
)

(α− ά)

+∇⊥ω
2
(α− ά)− 2b⊥ω · ∇⊥ω (α− ά) + b⊥ω

2
(α− ά)

− 2b̄⊥ω ά+ b̄⊥ω · (b+ b́)⊥ω ά.

Using this and that α is bounded away from zero, we have

|Lα− Ĺά| <
∣∣(āt −∇ω · b̄ω) + ω · (b̄t −∇ā)

∣∣− |∇⊥ω 2
(α− ά)| − |∇⊥ω (α− ά)| − |α− ά| − |b̄|,

which used in (5.15) gives us

‖(āt −∇ω · b̄ω) + ω · (b̄t −∇ā)‖20,σ,Lω
4 ‖[ā, b̄]‖20,σ,Lω + ‖∇⊥ω

2
(α− ά)‖20,σ,Lω + ‖∇⊥ω (α− ά)‖20,σ,Lω + ‖α− ά‖20,σ,Lω

+
1

σ
‖[ā, b̄]‖20,σ,Qω + ‖v̄‖21,σ,Hω + ‖∂tv̄‖20,σ,Hω . (5.17)

Combining the U , V estimates.

Multiplying the V based estimate (5.17) by a small (independent of σ) ε > 0 and adding it to
the combined U based estimate (5.13), we obtain

ε‖(āt −∇ω · b̄ω) + ω · (b̄t −∇ā)‖20,σ,Lω,τ + ‖ā+ ω · b̄‖20,σ,Lω,τ
+ ‖∇⊥ω (ā+ ω · b̄)‖20,σ,Lω,τ + ‖(∂t + ω · ∇)(ā+ ω · b̄)‖20,σ,Lω,τ

4 ε‖[ā, b̄]‖20,σ,Lω,τ +
1

σ
‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖20,σ,Qω,τ + dataω,τ,σ

where
dataω,τ,σ = ‖[∇ū, ūt, ū]‖21,σ,Hω,τ + ‖ūtt‖20,σ,Hω,τ + ‖v̄‖21,σ,Hω,τ + ‖v̄t‖20,σ,Hω,τ .

Integrating this w.r.t τ over [−1, T + 1] and repeating the argument used at the end of the proof
of Theorem 1.3 we obtain

‖[ā+ ω · b̄,∇⊥ω (ā+ ω · b̄), (∂t + ω · ∇)(ā+ ω · b̄)‖20,σ,Rn×[0,T ]

+ ε‖(āt −∇ω · b̄ω) + ω · (b̄t −∇ā)‖20,σ,Rn×[0,T ]

4 ε‖[ā, b̄]‖20,σ,Rn×[0,T ] +
1

σ
‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖20,σ,Rn×[0,T ] +

∫ T+1

−1
dataω,τ,σ dτ.

All norms below are ‖ · ‖0,σ,Rn×[0,T ] unless noted otherwise. Since ∇⊥ω and ∇ω · b̄ω are the same
for ω and −ω, using the estimates for ω and −ω, we obtain

‖[ā, ω · b̄,∇⊥ω ā, ∇⊥ω (ω · b̄), āt + (ω · ∇)(ω · b̄), ω · ∇ā+ ω · b̄t]‖2 + ε‖[āt −∇ω · b̄ω, ω · (b̄t −∇ā)]‖2

4 ε‖b̄‖2 +
1

σ
‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖2 +

∫ T+1

−1
data±ω,τ,σ dτ.
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Noting that the LHS has the terms ∂tā − ∇ω · b̄ω and ∂tā + ∇ω · b̄ω, as well as ω · (b̄t − ∇ā) and
ω · ∇ā+ ω · ∂tb̄, we obtain that

ε‖[āt, (ω · ∇)(ω · b̄), ω · b̄t, ω · ∇ā, ∇⊥ω ā,∇⊥ω (ω · b̄))‖2 + ‖[ā, ω · b̄]‖2

4 ε‖b̄‖2 +
1

σ
‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖2 +

∫ T+1

−1
data±ω,τ,σ dτ.

Now taking ω to be e1, · · · , en we have

‖[ā, b̄]‖2 + ε‖[∇ā, āt,∇b̄, b̄t]‖2 4 ε‖b̄‖2 +
1

σ
‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖2 +

n∑
i=1

∫ T+1

−1
data±ei,τ,σ dτ.

So taking ε small enough and then fixing a σ large enough

‖[ā, b̄,∇ā,∇b̄, āt, b̄t]‖2 4
n∑
i=1

∫ T+1

−1
data±ei,τ,σ dτ.

Since c̄ = āt −∇ · b̄, we conclude

‖[ā, b̄, c̄,∇ā,∇b̄, āt, b̄t]‖2 4
n∑
i=1

∫ T+1

−1
data±ei,τ,σ dτ,

for the fixed large enough σ.

For a fixed σ, on a compact set, the weighted and unweighted norms are equivalent, so the
theorem is proved. It remains to show (5.16) when c = at −∇ · b.

Proof of (5.16).

We note that

Lα− cα =
(
(∂t − a)2 − (∇− b)2

)
α =

(
(∂t − a)2 − (∇ω − bω +∇⊥ω − b⊥ω )2

)
α

=
(

(∂t − a)2 − (∇ω − bω)2 − (∇⊥ω − b⊥ω )2
)
α

=
(

(∂t − a)2 − (ω · ∇ − ω · b)2 − (∇⊥ω − b⊥ω )2
)
α.

Hence, using (1.23)

Lα− cα+ (∇⊥ω − b⊥ω )2α = (∂t − ω · ∇ − a+ ω · b)(∂t + ω · ∇ − a− ω · b)α
− (∂t − a)(ω · ∇ − ω · b)α− (−ω · ∇+ ω · b)(∂t − a)α

= (ω · bt − ω · ∇a)α,

therefore
Lα = (c+ ω · (bt −∇a))α− (∇⊥ω − b⊥ω )2α.

Now
(∇⊥ω − b⊥ω )2α = ∇⊥ω

2
α− 2b⊥ω · ∇⊥ωα− (∇⊥ω · b⊥ω )α+ b⊥ω

2
α
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while
c = at −∇ · b = at −∇ω · bω −∇⊥ω · b⊥ω ,

hence

Lα = ((at −∇ω · bω) + ω · (bt −∇a))α+∇⊥ω
2
α− 2b⊥ω · ∇⊥ωα+ b⊥ω

2
α.

6 The Carleman estimate

We show that the standard Carleman estimate with boundary terms holds for the operator La,b,c
with the Carleman weight t over the region Qω,τ . We need the explicit boundary terms in the
proofs of our theorems. Here a, bi, c are compactly supported smooth functions on Rn × [0, T ].

Proposition 6.1. If w(x, t) is a compactly supported C3 function on Qω,τ then, for large enough
σ, we have

σ

∫
Qω,τ

e2σt(|∇x,tw|2 + σ2|w|2) + σ

∫
Lω,τ

e2σt(|∇Lw|2 + σ2|w|2)

4
∫
Qω,τ

e2σt|La,b,cw|2 + σ

∫
Hω,τ

e2σt(|∇x,tw|2 + σ2|w|2) (6.1)

with the constant independent of w and σ. Here ∇L is the gradient operator on the plane Lω,τ .

Proof. This proposition could probably be proved by using energy estimates coming from standard
multipliers but we use Carleman estimates since we have already calculated the boundary terms in
[22] for a general situation. Below, we use the notation used for Theorem A.7 in [22].

We appeal to Theorem A.7 of [22]. The hypothesis of Theorem A.7 requires the strong pseudo-
convexity of φ but the proof of Theorem A.7 just needs that the relation (A.9) (in Lemma A.6)
holds. One can verify that (A.9) holds for the wave operator and φ(x, t) = t. In fact (A.9) holds
because there are no “(x, ξ, σ) ∈ Ω̄ × S with p(x, ξ) − σ2p(x, ∂φ) = 0 and {p, φ}(x, ξ) = 0” as we
show next. We have p(x, t, ξ, τ) = τ2 − |ξ|2 and φ(x, t) = t. Hence

0 = {p, φ}(x, t, ξ, τ) = pτφt = ±2τ

and
0 = p(x, t, ξ, τ)− σ2p(x, t,∇φ, φt) = τ2 − |ξ|2 − σ2

imply τ = 0, ξ = 0, σ = 0, hence there are no points “(x, ξ, σ) ∈ Ω̄×S with p(x, ξ)−σ2p(x, ∂φ) = 0
and {p, φ}(x, ξ) = 0”. Note S represents the unit sphere.

The proposition will follow from an analysis of the boundary terms in the statement of Theorem
A.7. The principal part of La,b,c is the wave operator and without loss of generality we assume that
τ = 0, x = (y, z) with y ∈ Rn−1, z ∈ R and ω is the unit vector in the direction of the positive z
axis hence Lω,τ is the plane t = z.
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The boundary term on t = z has been computed in Subsection A.2 in [22] and is given by

1√
2
νjEj = (φt − φz)(uz + ut)

2 + (φz + φt)|uy|2 − 2(uz + ut)(uy · φy)

− σ2(φz + φt)(|φx|2 − φ2
t )u

2 − (uz + ut)g(x, t)u.

where u = weσφ and g is some smooth function independent of σ. Hence, on t = z for φ = t we
have u = weσt and

1√
2
νjEj = (uz + ut)

2 + |uy|2 + σ2u2 − (uz + ut)g(x, t)u

≥ (uz + ut)
2 + |uy|2 + σ2u2 − 1

2
(uz + ut)

2 − ku2

=
1

2
(uz + ut)

2 + |uy|2 + (σ2 − k)u2 k independent of σ

< e2σt((wz + wt)
2 + |wy|2 + σ2w2) using a standard argument

for σ large enough.

To get the boundary terms on t = T , we again go to the expressions in subsection A.2 on [22]
for the wave operator. Here νx = 0 and νt = (0, 0, · · · , 0, 1), hence νjEj = 0 for j = 1, · · · , n and

νtEt = −φt(|ux|2 − u2
t ) + σ2φt(|φx|2 − φ2

t )u
2 + 2ut(ux · φx − utφt) + g(x, t)utu.

Hence, on t = T , for φ = t we have

νtEt = −(|ux|2 − u2
t )− σ2u2 − 2u2

t + g(x, t)utu

= −(|ux|2 + u2
t )− σ2u2 + g(x, t)utu

< −e2σt(|∇x,tw|2 + σ2w2)

by a standard argument. The proposition now follows from (A.11) of Theorem A.7 in [22].

7 The forward problems

7.1 Proof of Proposition 1.1

The existence, uniqueness and the regularity may be proved in a fashion similar to the proof of
Proposition 1.1 in [23]. The only part which is new is the progressing wave expansion which we
show below. Below, L will mean La,b,c.

We seek U in the form

U(x, t;ω, τ) = u(x, t;ω, τ)H(t− τ − x · ω)

for some function u(x, t;ω, τ) defined on the region t ≥ τ + x · ω. To describe u(x, t;ω, τ) in detail,
we work with the special case when τ = 0; the general τ result will be inferred easily from this
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special case. Below we denote U(x, t;ω, 0), u(x, t;ω, 0) and α(x;ω, 0) by U(x, t;ω), u(x, t;ω) and
α(x;ω).

The initial condition and the speed of propagation force

u(x, t;ω) = 1, when t� 0.

Also, observe that

(∂t − a)(f(x, t)F (t− x · ω)) = fF ′(t− x · ω) + ((∂t − a)f)F (t− x · ω)

(∂t − a)2(f(x, t)F (t− x · ω)) = fF ′′(t− x · ω) + 2((∂t − a)f)F ′(t− x · ω)

+ ((∂t − a)2f)F (t− x · ω)

(∇− b)(f(x, t)F (t− x · ω)) = −ωfF ′(t− x · ω) + ((∇− b)f)F (t− x · ω)

((∇− b)2)F (t− x · ω)) = fF ′′(t− x · ω)− 2(ω · (∇− b)f)F ′(t− x · ω)

+ ((∇− b)2f)F (t− x · ω),

so

L(f(x, t)F (t− x · ω)) = 2(ft + ω · ∇f − (a+ ω · b)f)F ′(t− x · ω) + (Lf)F (t− x · ω). (7.1)

Hence

LU = 2(ut + ω · ∇u− (a+ ω · b)u)δ(t− x · ω) + (Lu)H(t− x · ω).

This forces Lu = 0 on the region t ≥ x · ω and, on t = x · ω, u must satisfy the transport equation

(ut + ω · ∇u− (a+ ω · b)u)(x, x · ω;ω) = 0.

Noting (1.23) and that α(x, x ·ω;ω) = 1 for x ·ω << 0 we see that u(x, x ·ω;ω) = α(x, x ·ω;ω).
Hence

U(x, t; ξ, τ) = u(x, t;ω, τ)H(t− τ − x · ω)

where u(x, t;ω, τ) is the solution of the characteristic initial value problem.

7.2 Proof of Proposition 1.2

The existence, uniqueness and the regularity may be proved in a fashion similar to the proof of
Proposition 1.1 in [23]. The only part which is new is the progressing wave expansion which we
show below. Below, L will mean La,b,c.

We seek V in the form

V (x, t;ω, τ) = f(x, t;ω, τ)δ(t− τ − x · ω) + v(x, t;ω, τ)H(t− τ − x · ω)

with v(x, t;ω, τ) supported in the region t ≥ τ +x ·ω and, for t << 0, we have f(x, t;ω, τ) = 1 and
v(x, t;ω, τ) = 0. There are many choices for f(x, t;ω, τ) but a unique choice for f(x, τ +x ·ω;ω, τ).
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To describe V (x, t;ω, τ) in detail we work with the special case when τ = 0; the general τ result will
be inferred easily from this special case. Below we denote V (x, t;ω, 0), f(x, ;ω, 0) and v(x, t;ω, 0)
by V (x, t;ω), f(x;ω) and v(x, t;ω).

We seek V in the form

V (x, t;ω) = f(x, t;ω)δ(t− x · ω) + v(x, t;ω)H(t− x · ω),

hence, using (7.1),

(LV )(x, t;ω) = 2(ft + ω · ∇f − (a+ ω · b)f)(x, t;ω)δ′(t− x · ω)

+ (2vt + 2ω · ∇v − 2(a+ ω · b)v + Lf)(x, x · ω;ω)δ(t− x · ω)

+ (Lv)(x, t;ω)H(t− x · ω).

Amongst the many choices for f to zero out the first term in the above expansion of LV , we choose
one for which

ft + ω · ∇f − (a+ ω · b)f = 0, on Rn × R.

Hence we chose f(x, t;ω) = α(x, t;ω) so we must now require

Lv = 0 on t ≥ x · ω

and, on t = x · ω, v must satisfy the transport equation

2(vt + ω · ∇v − (a+ ω · b)v)(x, x · ω;ω) = −(Lα)(x, x · ω;ω), x ∈ Rn.

So for a general τ ,

V (x, t;ω, τ) = α(x, t;ω)δ(t− τ − x · ω) + v(x, t;ω, τ)H(t− τ − x · ω)

where v(x, t;ω, τ) is the solution of the characteristic IVP.
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