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1. Introduction

The study of transverse ray transforms (TRT) of symmetric tensor fields is of interest in problems arising
in polarization and diffraction tomography. In this paper, we consider an approximate inversion of a TRT
acting on symmetric tensor fields restricted to all lines passing through a fixed curve in R3. More precisely,
we use techniques from microlocal analysis to construct a relative left parametrix for the restricted TRT.

We denote the space of covariant symmetric m-tensors in R3 by Sm = Sm(R3). Let C∞c (Sm) be the space
of smooth compactly supported symmetric m-tensor fields in R3. In R3, an element f ∈ C∞c (Sm) can be
written as

f(x) = fi1···im(x)dxi1 · · · dxim ,
with {fi1···im(x)} symmetric in its components, smooth and compactly supported. With repeating indices,
Einstein summation convention will be assumed throughout this paper.

We now define TRT, the primary object of study in this paper. Let ω ∈ S2 be represented in spherical
coordinates by

ω = (cos θ1, sin θ1 cos θ2, sin θ1 sin θ2) .

where 0 ≤ θ1 < π and 0 ≤ θ2 < 2π.
Given ω, let ω1 and ω2 be defined as follows:

ω1 = (− sin θ1, cos θ1 cos θ2, cos θ1 sin θ2) and(1)

ω2 = (0,− sin θ2, cos θ2) .

We define the transverse ray transform T [26] in R3 as follows:

Definition 1.1. [Transverse ray transform T , [26]] For 0 ≤ i ≤ m, define T = (Ti) : C∞c (Sm) →(
C∞(TS2)

)m+1
by

Tif(x, ω) =

∫
R
fj1j2···jm(x+ tω)ωj11 · · ·ω

jm−i

1 ω
jm−(i−1)

2 · · ·ωjm2 dt,(2)

In 2-dimensions, TRT and the standard ray transform [26], also called the longitudinal ray transform
(LRT), give equivalent information and it is well-known that the latter transform on symmetric tensor
fields has an infinite dimensional kernel. Hence it is not possible to reconstruct the tensor field f from its
transverse ray transform in 2-dimensions. Furthermore, the space of lines in Rn is 2n− 2 dimensional, and
in dimensions n ≥ 3, the problem of recovery of f from T f is over-determined. Therefore a natural question
is to investigate the inversion of T restricted to an n-dimensional data set. We address this incomplete data
problem for the case of dimension n = 3 in this paper.
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The study of inversion of TRT and the corresponding non-linear problem appearing in polarization to-
mography has been considered in several prior works [26, 24, 27, 14, 21, 7, 6, 18]. With respect to the study
of restricted TRT, we refer to the works of [22, 7]. Recently a support theorem for TRT in the setting of
analytic simple Riemannian manifolds was considered by [1].

We study the inversion of an incomplete data TRT from a microlocal analysis point of view. We are
interested in the reconstruction of singularities of the symmetric tensor field f given its restricted TRT.
The study of generalized Radon transforms in the framework of Fourier integral operators began with the
fundamental work of Guillemin [11] and Guillemin-Sternberg [12]. Since then, microlocal analysis has become
a very powerful tool in the study of tomography problems; see [10, 9, 4, 5, 28, 15, 20, 25, 29, 30, 31, 30, 16, 2].
Of these works, the paper [9] is a fundamental work where Greenleaf and Uhlmann studied an incomplete
data ray transform on functions in the setting of Riemannian manifolds. However, most of these works are
done for LRT and to the best of our knowledge, other than the support theorem result [1], we are not aware
of any prior work that studies a restricted TRT from the view point of microlocal analysis.

Specifically, we study the microlocal inversion of the Euclidean TRT on symmetric m-tensor fields given
the incomplete data set consisting of all lines passing through a fixed curve γ in R3. The transverse ray
transform T defined in (2) restricted to lines passing through the curve γ will be denoted by Tγ and its
formal L2 adjoint by T ∗γ . We determine the extent to which the wavefront set of a symmetric m-tensor field
can be recovered from the wavefront set of its restricted TRT.

The main motivation for our article comes from the related works done for the longitudinal ray transform
[9, 19, 20, 25, 17] and we mainly follow the techniques from these works.

The article is organized as follows. In §2, we state the main result, some fundamental results about
distributions associated to two cleanly intersecting Lagrangians introduced by [23, 13, 9] and the microlocal
results relevant for the analysis of our transform. §3 is devoted to stating some preliminary results about
the restricted TRT. We do not give any proofs in this section as all the details follow in a straightforward
manner from the works [19, 20, 17]. We prove the main result in §4 and §5.

2. Statement of the main result

In order to invert the TRT restricted to lines passing through a curve in R3, we need to place some
conditions on the curve γ. We state them and proceed to the main result.

(1) The curve γ : I → R3, where I is a bounded interval, is smooth, regular and without self-intersections.
(2) There is a uniform bound on the number of intersection points of almost every plane in R3 with the

curve γ, see [19].
(3) The curve γ satisfies the Kirillov-Tuy condition; see Definition 2.1 below.

Definition 2.1 (Kirillov-Tuy condition, [17]). Consider a ball B in R3. We say that a smooth curve γ defined
on a bounded interval satisfies the Kirillov-Tuy condition of order m ≥ 1 if for almost all planes H in R3

intersecting the ball B, there is at least (m+1) points γ(t1), . . . ,γ(tm+1), in the intersection of the plane and
the curve γ, such that for almost all x ∈ H ∩B any two vectors in the collection {(x−γ(ti)), 1 ≤ i ≤ m+ 1}
is linearly independent.

Remark 2.2. In dimension n = 3, the Kirillov-Tuy condition is equivalent to the collection of vectors
consisting of the mth symmetric tensor product {(x − γ(ti)

�m; 1 ≤ i ≤ m + 1} being linearly independent.
However, this is not the case for higher dimensions in general [17]. Due to this reason, the above men-
tioned definition of Kirillov-Tuy condition is not sufficient to microlocally invert the restricted TRT. It is
an interesting question to define the appropriate Kirillov-Tuy condition for the inversion of TRT in higher
dimensions.

Following [9, 25], we now define the following sets. The definitions of these sets is motivated by the fact
that these are the wavefront set directions that we can recover based on microlocal analysis techniques.

Let B be the ball that appears in the definition of Kirillov-Tuy condition. Denote the plane passing
through x and perpendicular to ξ by x+ ξ⊥.
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Let

Ξ =
{

(x, ξ) ∈ T ∗B \ {0} : there exists at least m+ 1 directions from x to (x+ ξ⊥) ∩ γ

and any two of them are linearly independent
}
.

Ξ∆ =
{

(x, ξ) ∈ Ξ : x+ ξ⊥ intersects γ transversely
}
.(3)

ΞΛ =
{

(x, ξ) ∈ Ξ : x+ ξ⊥ is tangent (only at finite number of points) at (say)

{γ(t1), · · · ,γ(tN )} and 〈γ′′(ti), ξ〉 6= 0 for i = 1, 2, · · · , N
}
.

We now state the main result.

Theorem 2.3. Let Ξ0 ⊆ Ξ∆ be such that Ξ0 ⊆ Ξ∆ ∪ ΞΛ and K be a closed conic subset of Ξ0. Let
E ′K(B) ⊂ E ′(B) denote the space of compactly supported distributions in B whose wavefront set is contained

in K. Then there exists an operator B ∈ I0,1(∆,Λ) and an operator A ∈ I−1/2(Λ) such that for any
symmetric m-tensor field f with coefficients in E ′K(B),

BT ∗γ Tγf = f +Af + smoothing terms.

For the definition of Ip,l classes, we refer the reader to the three seminal works on this subject [23, 13, 9].
For the convenience of the reader, we give a quick summary of the properties of the Ip,l class of distributions
[13]. Let u ∈ Ip,l(∆,Λ), where ∆ and Λ are two cleanly intersecting Lagrangians with intersection Σ. Then

(1) WF (u) ⊂ ∆ ∪ Λ.
(2) Microlocally, the Schwartz kernel of u equals the Schwartz kernel of a pseudodifferential operator of

order p+ l on ∆ \ Λ and that of a classical Fourier integral operator of order p on Λ \∆.

(3) Ip,l ⊂ Ip′,l′ if p ≤ p′ and l ≤ l′.
(4) ∩lIp,l(∆,Λ) ⊂ Ip(Λ).
(5) ∩pIp,l(∆,Λ) ⊂ The class of smoothing operators.
(6) The principal symbol σ0(u) on ∆ \ Σ has the singularity on Σ as a conormal distribution of order

l − k
2 , where k is the codimension of Σ as a submanifold of ∆ or Λ.

(7) If the principal symbol σ0(u) = 0 on ∆ \ Σ, then u ∈ Ip,l−1(∆,Λ) + Ip−1,l(∆,Λ).
(8) u is said to be elliptic if the principal symbol σ0(u) 6= 0 on ∆\Σ if k ≥ 2, and for k = 1, if σ0(u) 6= 0

on each connected component of ∆ \ Σ.

The Lagrangian Λ defined in (8) arises as a flowout, and the main tool in the construction of a relative
left parametrix for our operator T ∗γ Tγ is the following composition calculus due to Antoniano and Uhlmann
[3]:

Theorem 2.4 ([3]). If A ∈ Ip,l(∆,Λ) and B ∈ Ip
′,l′(∆,Λ), then composition of A and B, A ◦ B ∈

Ip+p
′+ k

2 ,l+l
′− k

2 (∆,Λ) and the prinicipal symbol, σ0(A ◦ B) = σ0(A)σ0(B), where, k is the codimension
of Σ as a submanifold of either ∆ or Λ.

We prove the theorem by adopting the strategy of [9, 20, 25, 17] in the TRT setting. More precisely,
we compute the principal symbol of the operator T ∗γ Tγ on the diagonal ∆ away from the set Σ and use
this principal symbol to construct a relative left parametrix for this operator. Since we deal with a re-
stricted transverse ray transform, the inversion procedure introduces an additional error term (in addition
to smoothing terms), but this error term is a Fourier integral operator associated to the known Lagrangian
Λ.

3. Preliminary results

In this section, we state some preliminary results regarding the singularities of the left and right projections
from the canonical relation associated to the operator Tγ . The proofs follow by straightforward modifications
of the ones given in [19, 17] and therefore we skip them.

Let us denote by C, the line complex consisting of all lines passing through the curve γ. Let l denote a
line in our line complex C and

Z = {(l, x) : x ∈ l} ⊂ C × Rn
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be the point-line relation. We have that (t, ω, s) is a local parametrization of Z. The conormal bundle of Z,
N∗Z, is described by {(t, ω, s,Γ, ξ)} where

(4) ξ = z1ω1 + z2ω2 for some z1 and z2 ∈ R,
and ωi’s are given by (1), and

(5) Γ =

Γ1

Γ2

Γ3

 =

 −ξ · γ′(t)−sz1

−sz2 sin θ1

 .

Lemma 3.1. The map
Φ : (t, θ1, θ2, s, z1, z2)→ (t, θ1, θ2,Γ;x, ξ)

with Γ as in (5), ξ as in (4) and x = γ(t) + sω gives a local parametrization of N∗Z at the points where
θ1 6= 0, π.

Proposition 3.2. Each component of the operator Tγ is a Fourier integral operator of order −1/2 with the
associated canonical relation C given by (N∗Z)′ where Z = {(l, x) : x ∈ l}. The left and the right projections
πL and πR from C drop rank simply by 1 on the set

(6) Σ := {(t, θ1, θ2, s, z1, z2) : γ′(t) · ξ = 0},
where ξ is given by (4). The left projection πL has a blowdown singularity along Σ and the right projection
πR has a fold singularity along Σ.

We refer the reader to [8] for the definitions of fold and blowdown singularities.

Lemma 3.3. The wavefront set of the Schwartz kernel of T ∗γ Tγ satisfies the following:

WF (T ∗γ Tγ) ⊂ ∆ ∪ Λ,

where ∆ and Λ are defined as follows:

(7) ∆ =
{

(x, ξ;x, ξ) : x = γ(t) + sθ, ξ ∈ θ⊥ \ {0}
}

and

Λ =
{

(x, ξ, y,
τ

τ̃
ξ) : x = γ(t) + τθ, y = γ(t) + τ̃ θ, ξ ∈ θ⊥ \ {0},γ′(t) · ξ = 0, τ 6= 0, τ̃ 6= 0

}
.(8)

Furthermore, ∆ and Λ intersect cleanly due to the third condition in (3).

Lemma 3.4. [19] The Lagrangian Λ defined in (8) arises as a flowout from the set πR(Σ).

4. Principal symbol of the operator T ∗γ Tγ
In this section, we compute the principal symbol matrix of the operator T ∗γ Tγ and show that it is elliptic.

The operator T ∗γ Tγ can be written as

T ∗γ Tγ =

m∑
i=0

[
R∗γ

(
ωj11 · · ·ω

jm−i

1 ω
jm−(i−1)

2 · · ·ωjm2 ωl11 · · ·ω
lm−i

1 ω
lm−(i−1)

2 · · ·ωlm2
)
Rγ

]
,

where Rγ is the restricted scalar ray transform and R∗γ is its formal L2 adjoint.

Proposition 4.1. The principal symbol matrix A0(x, ξ) of the operator T ∗γ Tγ is

A0(x, ξ) =
∑
k

m∑
i=0

2πωj11 (tk) · · ·ωjm−i

1 (tk)ω
jm−(i−1)

2 · · ·ωjm2 (tk)ωl11 (tk) · · ·ωlm−i

1 (tk)ω
lm−(i−1)

2 (tk) · · ·ωlm2 (tk)

|ξ||(γ′(tk(ξ0)) · ξ0)||(γ(tk(ξ0))− x)|
,

(9)

where k is the number of intersection points of the plane x+ ξ⊥ with the given curve γ.

The entries of the principal symbol matrix A0(x, ξ) is obtained by fixing a lexicographic ordering of
the indices of a symmetric m-tensor field. The proof of the above proposition follows by straightforward
adaptation of the arguments given in [19, 25, 17].

Proposition 4.2. The principal symbol matrix A0(x, ξ) is injective.
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Proof. For (x, ξ) ∈ T ∗(R3) \ 0, without loss of generality, we choose a spherical coordinate system such that
ω(·) and ω1(·) are parallel to the plane x+ ξ⊥ and ω2(·) is in the direction of ξ.

By the Kirillov-Tuy condition, the hyperplane x + ξ⊥ intersects the curve γ in at least (m + 1) points,
say t1, · · · , tm+1. Denote the collection of unit vectors from x to x+ ξ⊥ ∩ γ as

A =

{
ω(tk) :=

x− γk
|x− γk|

: γk = γ(tk), 1 ≤ k ≤ m+ 1

}
.

Now any two of the vectors in A are linearly independent by the Kirillov-Tuy condition. This in turn implies
that for almost all points x, any two of the vectors in the collection

A′ =

{
ω1(tk) : 1 ≤ k ≤ m+ 1

}
are also linearly independent. Denote the matrix Up = U1 · · · 1︸ ︷︷ ︸

p

2 · · · 2︸ ︷︷ ︸
m−p

, where 0 ≤ p ≤ m, whose columns are

ω1(tk)�p � ω2(tk)�m−p for 1 ≤ k ≤ m+ 1.

We write A0(x, ξ) as

A0(x, ξ) = PP t,

where P is defined in (10). In Lemma 4.4, we show that rank (P ) = (m + 2)(m + 1)/2. Since P has real
entries, rank(PP t) = rank(P ). Therefore the principal symbol matrix A0(x, ξ) has full rank on ∆ \ Σ. �

Lemma 4.3. The rank of Up is p+ 1.

Proof. By the Kirillov-Tuy condition, we have a set consisting of at least m+1 pairwise linearly independent
vectors {ω(t1), · · · , ω(tm+1)}. Now ω1(t1), · · · , ω1(tm+1) are pairwise linearly independent and perpendicular
to ξ. By the Kirillov-Tuy condition, the collection of vectors {ω1(t1)�p, · · · , ω1(tp+1)�p} has rank p + 1.
Then the rank of the matrix whose columns are ωθ1(t1)�p, · · · , ωθ1(tm+1)�p is at least p+ 1.

Finally, the rank of Up is at least p+ 1 as well, since ω2(tk)’s are in the direction of the nonzero vector ξ.
We will be able to conclude that the rank is exactly p+ 1 as a consequence of the next lemma. �

Let us denote the matrix P with column blocks {Ui}, 0 ≤ i ≤ m:

P =
(
Um Um−1 · · · Up · · · U0

)
(10)

Lemma 4.4. The rank of P is (m+ 2)(m+ 1)/2.

The proof of this is a straightforward consequence of the following lemma.

Lemma 4.5. Consider an arbitrary Ul for 0 ≤ l ≤ m. Assume that the values of tk corresponding to the
linearly independent columns of Ul are tk1 , · · · , tkj+1 . Any column among these l + 1 linearly independent
columns cannot be written as a linear combination of the columns of the matrices Up for 0 ≤ p ≤ m, p 6= l
and the remaining l linearly independent columns of the matrix Ul.

Proof. Fix one of the linearly independent columns from Ul, say, ω(tk1)�l � ξ�m−l. Suppose there exists
constants cpi’s and dj ’s such that

ω1(tk1)�l � ξ�m−l =

m∑
p=0,p6=l

m+1∑
i=1

cpiω1(ti)
�p � ξ�m−p +

l+1∑
j=2

djω1(tkj )�l � ξ�m−l.(11)
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We can write ω1(tki) =
∑2
j=1 aijω1(tkj ) for i ≥ 3. Substituting this above, we have,

ω1(tk1)�l � ξ�m−l =

m∑
p=0,p6=l

cp1ω1(tk1)�p + cp2∂θ1ω(tk2)�p +

m+1∑
i=3

cpi

 2∑
j=1

aijω1(tkj )

�p� ξ�m−p
+

 l+1∑
j=3

d̃ja
l
j1

ω1(tk1)�l � ξ�m−l +

d2 +

l+1∑
j=3

d̃ja
l
j2

 ∂θ1ω(tk2)�l � ξ�m−l

+

l−1∑
s=1

l+1∑
j=3

d̃ja
l−s
j1 asj2ω1(tk1)�l−s � ω1(tk2)�s � ξ�m−l

This implies, for certain constants cr1r2 ,

m∑
p=0,p 6=l

∑
r1+r2=p

cr1r2ω1(tk1)�r1 � ω1(tk2)�r2 � ξ�m−p

+

 l+1∑
j=3

d̃ja
l
j1 − 1

ω1(tk1)�l � ξ�m−l +

d2 +

l+1∑
j=3

d̃ja
l
j2

ω1(tk2)�l � ξ�m−l

+

l−1∑
s=1

l+1∑
j=3

d̃ja
l−s
j1 asj2∂θ1ω(t1)�l−s � ∂θ1ω(t2)�s � ξ�m−l = 0.

The vectors {ω1(tk1), ω1(tk2), ξ} are linearly independent. Therefore the collection of tensors {ω1(tk1)�k1 �
ω1(tk2)�k2 � ξ�k3 : k1 + k2 + k3 = m} is also linearly independent. Thus

(12)

cr1r2 = 0

l+1∑
j=3

d̃ja
l
j − 1 = 0

d2 +

l+1∑
j=3

d̃ja
l
j2 = 0

l+1∑
j=3

d̃ja
l−s
j1 asj2 = 0 for 1 ≤ s ≤ l − 1.

Since aj1 and aj2 are non-zero, the last of the equations in (12) can be written as

AX = 0,

where

A =


al−2

31 · · · al−2
l+11

al−3
31 a32 · · · al−3

l+11al+12

...
. . .

...

al−2
32 · · · al−2

l+12


and X = (d̃3, d̃4, · · · , d̃l+1).

Let bj = (aj1, aj2) for 3 ≤ j ≤ l + 1. Since any two vectors from {ω1(tkj ) : 3 ≤ j ≤ l + 1} are linearly
independent, any two vectors from the set {bj : 3 ≤ j ≤ l+ 1} are also linearly independent and the columns

of A are {b�l−2
j , 3 ≤ j ≤ l + 1}. Therefore by the Kirillov-Tuy condition for m = l − 2, we have that the

matrix A has full rank. Hence {d̃j = 0, 3 ≤ j ≤ l + 1}. However, this contradicts the second equation in
(12). This completes the proof. �

Now going back to the proof of Lemma 4.3, we have that the rank of Up is exactly p+ 1 as well.
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Remark 4.6. In the general case of fixing a spherical coordinate system independent of the plane x+ ξ⊥,
the arguments would follow similarly as above, except that, one would need to consider linear combinations
of the components Ti of the TRT T in the proofs above.

5. Microlocal inversion

In this section, we will give a relative left parametrix for the operator T ∗γ Tγ . This will complete the proof
of Theorem 2.3.

Proof of Theorem 2.3. Now that ellipticity ofA0(x, ξ) is shown, the construction of the relative left parametrix
follows the arguments of [25, 17]. For the sake of completeness, we sketch the proof.

Since A0(x, ξ) is a symmetric matrix of order (m+ 1)(m+ 2)/2, we diagonalize A0(x, ξ) by an orthogonal
matrix O such that

A0(x, ξ) = ODOt,
where D is the diagonal matrix consisting eigenvalues of A0 and O is an orthogonal matrix whose columns
are eigenvectors corresponding to the eigenvalues of A0. Since A0 has full rank, all diagonal entries in D are
non-zero. Let

B0(x, ξ) = OD−Ot

where D− is a matrix obtained from D by taking the reciprocal of the diagonal elements. We have

B0(x, ξ)A0(x, ξ) = Id.

The entries of B0(x, ξ) belong to the symbol of an Ip,l(∆,Λ) class, since the possible singularities of O and
D− are only on Σ. Define the matrix b0 as

(13) b0 =

{
B0 if (x, ξ) ∈ Ξ0,

0 otherwise.

and B0 be the operator with symbol matrix b0(x, ξ).
Now the operator T ∗γ Tγ ∈ I−1,0(∆,Λ), and since the principal symbol of the composition B0T ∗γ Tγ on

∆ away from the intersection ∆ ∩ Λ is the product of the respective principal symbols by [3], which by

construction is the identity on ∆ away from ∆ ∩ Λ, we have that B0T ∗γ Tγ ∈ I−
1
2 ,

1
2 (∆,Λ).

Define T1 = B0T ∗γ Tγ − Id. By construction the pricipal symbol of T1 is 0. We now use the exact sequence
[13]

0→ Ip,l−1(∆,Λ) + Ip−1,l(∆,Λ)→ Ip,l(∆,Λ)
σ0−→ Sp,l(∆,Σ)→ 0.

to decompose T1 as T1 = T11 + T12 where T11 ∈ I−
3
2 ,

1
2 and T12 ∈ I−

1
2 ,−

1
2 .

Since A0 has full rank, we can find two matrices t11 and t12 such that the principal symbol σ0(T1j) = t1jA0

for j = 1, 2.
Let B11 and B12 be the operators having symbol matrices −t11 and −t12 respectively. For B1 = B11 +B12,

define T2 = (B0 + B1)T ∗γ Tγ − Id. We have

T2 = (B0 + B1)T ∗γ Tγ − Id

= B11T ∗γ Tγ + B12T ∗γ Tγ + B0T ∗γ Tγ − Id

= B11T ∗γ Tγ + T11︸ ︷︷ ︸
K1

+B12T ∗γ Tγ + T12︸ ︷︷ ︸
K2

.

In the above expression K1 ∈ I−
3
2 ,

1
2 and K2 ∈ I−

1
2 ,−

1
2 . Also, by construction, σ0(K1) = 0 and σ0(K2) = 0

because σ0(B11T ∗γ Tγ) = −σ0(T11) and σ0(B12T ∗γ Tγ) = −σ0(T12). Therefore we can again use symbol calculus
to decompose K1 and K2 as follows:

K1 = K11 +K12, with K11 ∈ I−
5
2 ,

1
2 ,K12 ∈ I−

3
2 ,−

1
2

K2 = K21 +K22, with K21 ∈ I−
3
2 ,−

1
2 ,K22 ∈ I−

1
2 ,−

3
2 .
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Putting this in T2, we get

T2 = K11︸︷︷︸
T20

+K12 +K21︸ ︷︷ ︸
T21

+K22︸︷︷︸
T22

where T20 ∈ I−
5
2 ,

1
2 , T21 ∈ I−

3
2 ,−

1
2 , T22 ∈ I−

1
2 ,−

3
2 . Therefore

T2 ∈
2∑
j=0

I−
1
2−2+j, 12−j .

Proceeding recursively, we get a sequence of operators

TN ∈
N∑
j=0

I−
1
2−N+j, 12−j .

We can break this sum as follows:

TN ∈
[ N2 ]∑
j=0

I−
1
2−N+j, 12−j +

N∑
j=[ N2 ]+1

I−
1
2−N+j, 12−j .

In the first sum − 1
2 −N + j ≤ − 1

2 −N +
[
N
2

]
and 1

2 − j ≤
1
2 . Similarly in the second sum, − 1

2 −N + j ≤ − 1
2

and 1
2 − j ≤ −

1
2 −

[
N
2

]
. Now we use Ip,l ⊂ Ip′,l′ for p ≤ p′, l ≤ l′ to get

[ N2 ]∑
j=0

I−
1
2−N+j, 12−j ∈ I−

1
2−N+[N

2 ], 12 and

N∑
j=[ N2 ]+1

I−
1
2−N+j, 12−j ∈ I−

1
2 ,−

1
2−[N

2 ].

In the limit N → ∞, the first term in the above expression is a smoothing term by the property that
∩pIp,l(∆,Λ) ⊂ C∞ and the second term is an operator A in I−

1
2 (Λ) by the property ∩lIp,l(∆,Λ) ⊂ Ip(Λ).

Finally, we define B = B0 + B1 + · · · and from the construction above, we get,

BT ∗γ Tγ(f) = f +Af + C∞.
This completes the proof of the Theorem 2.3. �
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