
UNIQUE CONTINUATION RESULTS FOR CERTAIN GENERALIZED RAY

TRANSFORMS OF SYMMETRIC TENSOR FIELDS

DIVYANSH AGRAWAL∗, VENKATESWARAN P. KRISHNAN§ AND SUMAN KUMAR SAHOO†

Abstract. Let Im denote the Euclidean ray transform acting on compactly supported symmetric m-tensor

field distributions f , and I∗m be its formal L2 adjoint. We study a unique continuation result for the normal

operator Nm = I∗mIm. More precisely, we show that if Nm vanishes to infinite order at a point x0 and if the
Saint-Venant operator W acting on f vanishes on an open set containing x0, then f is a potential tensor field.

This generalizes two recent works of Ilmavirta and Mönkkönen who proved such unique continuation results

for the ray transform of functions and vector fields/1-forms. One of the main contributions of this work is
identifying the Saint-Venant operator acting on higher order tensor fields as the right generalization of the

exterior derivative operator acting on 1-forms, which makes unique continuation results for ray transforms of

higher order tensor fields possible. In the second half of the paper, we prove analogous unique continuation
results for momentum ray and transverse ray transforms.

1. Introduction

The purpose of this paper is to prove unique continuation properties (UCP) for three Euclidean ray
transforms of symmetric m-tensor fields; the (usual) ray transform, momentum ray transform and transverse
ray transform. Roughly speaking, we show the following: Let f be a compactly supported m-tensor field
distribution and U be a non-empty open subset of Rn for n ≥ 2.

(1) If the ray transform of f vanishes u and if the Saint-Venant operator acting on f vanishes on the
same open set, then f is a potential tensor field.

(2) If certain momentum ray transforms of f vanish on a set of lines passing through U and if the
generalized Saint-Venant operator acting on f vanishes on the same open set, then f is a generalized
potential tensor field.

(3) Let n ≥ 3. If the transverse ray transform of f vanishes on a set of lines passing through U and if f
vanishes on the same open set, then f vanishes identically.

We actually prove stronger versions of some of the the statements mentioned above; see the precise
statements of the theorems in the concluding paragraphs of Section 2.

The study of the three transforms on symmetric tensor fields is motivated by applications in several applied
fields. The investigation of ray transform of symmetric 2-tensor fields is motivated by applications in travel-
time tomography [20, 23] and that of symmetric 4-tensor fields in elasticity [20]. The study of momentum
ray transforms was introduced by Sharaftudinov [20] and a more detailed investigation of this transform was
undertaken in [1, 10, 11, 16]. Analysis of such transforms appeared recently in the solution of a Calderón-
type inverse problem for polyharmonic operators; see [2]. Transverse ray transform of symmetric tensor
fields appear in the study of polarization tomography [20, 17, 15] and X-ray diffraction strain tomography
[14, 4].

We note that the recovery of a symmetric m-tensor field f from the knowledge of its ray transform Imf
is an over-determined problem in dimensions n ≥ 3. However, the recovery of f given the normal operator
Nmf = I∗mImf , when viewed as a convolution operator; see (2.16), is a formally determined inverse problem,
where I∗m is the formal L2 adjoint. Furthermore, we study a partial data problem, that is, the recovery
of f , from the knowledge of Nmf and a component of f given in a fixed open subset of Rn. We prove a
unique continuation result for this as well as for two other transforms; the momentum ray and transverse
ray transforms. The motivation for a result of this kind for the ray transform comes from its connection to
the fractional Laplacian operator. The inversion formula for the recovery of a function (for instance) from

its corresponding normal operator is given by the following formula: f = C(−∆)1/2I∗0 I0f , where C is a
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constant that depends only on dimension. Unique continuation results for the fractional operators have a
long history and go back to the works of Riesz [18] and Kotake-Narasimhan [9]. A unique continuation result
for a fractional Schrödinger equation with rough potentials was done in [19]. In the context of a Calderón-
type inverse problem involving the fractional Laplacian, a unique continuation result was employed to prove
uniqueness in [5].

Unique continuation results for the ray transform of functions, the d-plane transform and the Radon
transform were initiated in the paper [6]. Later this was extended to a unique continuation result for the
Doppler transform, which deals with the ray transform of a vector field or equivalently a 1-form in [7]. One
added difficulty in dealing with the Doppler transform or ray transform of higher order symmetric tensor
fields is that the ray transform has an infinite dimensional kernel. Therefore unique recovery of the full
symmetric tensor field from its ray transform is not possible. Going back to the paper [7], roughly speaking,
the main result of the paper reads as follows: Let f be a compactly supported vector field/1-form and suppose
df = 0 on an non-empty open set U , where df is the exterior derivative of the 1-form f , and if the Doppler
transform of f vanishes along all lines intersecting U , then df ≡ 0 in Rn. The results of our paper can be
viewed as a generalization of this work. The approach of [7] is to reduce the unique continuation result for
the Doppler transform to that of the scalar ray transform of each component of df . We follow their idea of
reducing to a unique continuation result for a scalar function for the symmetric tensor field case, however,
our approach as well as the technique of proof are different. Our main contribution is in identifying the
right analogue of the exterior derivative operator to higher order symmetric tensor fields case, which turns
out to be the Saint-Venant operator, to prove the unique continuation results for ray transform of higher
order symmetric tensor fields. We also prove unique continuation results for momentum ray transforms as
well as for transverse ray transform of symmetric tensor fields. To prove unique continuation results for the
momentum ray transform, we consider the generalized Saint-Venant operator introduced by Sharafutdinov
[20]. In fact, we define an equivalent version of the generalized Saint-Venant operator from [20] suitable for
our purposes to prove our result.

The article is organized as follows. In Section 2, we give the requisite preliminaries and give the statement
of the main results. Readers familiar with the integral geometry literature may choose to skip the parts of
the section where we fix the notation required to give the statements of the theorems. Instead, they may
go directly to the results near the end of Section 2 and refer back to the preliminary material as and when
required. Sections 3, 4 and 5 give the proofs of the unique continuation results for ray transform, momentum
ray transform and transverse ray transform, respectively.

2. Preliminaries and statements of the main results

To state the main results of this work, we begin by defining the operators that will be used throughout
the article. Most of these are standard in integral geometry literature and the reference is the book by
Sharafutdinov [20]. For the purpose of fixing the notation, we give them here.

2.1. Definitions of some operators. We let Tm = TmRn denote the complex vector space of R-multi-
linear functions from Rn × · · · × Rn︸ ︷︷ ︸

m times

→ C. Let e1, · · · , en be the standard basis for Rn. Given an element

u ∈ Tm, we let ui1···im = u(ei1 , · · · , eim). These are the components of the tensor Tm.
Given u ∈ Tm and v ∈ T k, the tensor product u⊗ v ∈ Tm+k is defined by

(u⊗ v)(x1, · · · , xm, xm+1, · · · , xm+k) = u(x1, · · · , xm)v(xm+1, · · · , xm+k).

By Sm = SmRn, we mean the subspace of Tm that are symmetric in all its m arguments. More precisely,
u is an element of Sm if

ui1···im = uiπ(1)···iπ(m)

for any π ∈ Πm – the group of permutations of the set {1, · · · ,m}.
Let σ : Tm → Sm be the symmetrization operator defined as follows:

σu(e1, · · · , em) =
1

m!

∑
π∈Πm

u(eπ(1), · · · , eπ(m)).
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The symmetrized tensor product of two tensors will be denoted by ⊙ instead of ⊗. That is, given u ∈ Tm

and v ∈ T k,

(u⊙ v) (x1, · · · , xm, xm+1, · · · , xm+k) =
1

(m+ k)!

∑
π∈Πm+k

u(xπ(1), · · · , xπ(m))v(xiπ(m+1)
, · · · , xiπ(m+k)

).

Given indices i1, · · · , im the operator of partial symmetrization with respect to the indices i1, . . . , ip, where
p < m, of a tensor u ∈ Tm is given by

σ(i1 . . . ip)ui1...im =
1

p!

∑
π∈Πp

uiπ(1)...iπ(p)ip+1...im ,

where Πp denotes the group of permutations of the set {1, . . . , p}.
We next define symmetric tensor fields. If A ⊂ D′(Rn), the space of A-valued symmetric tensor field

distributions of Rn is defined by A(Rn;Sm) = A⊗C S
m. Denote by C∞(Rn;Sm), S(Rn;Sm), C∞

c (Rn;Sm),
D′(Rn;Sm), S ′(Rn;Sm) and E ′(Rn;Sm) the space of symmetric m-tensor fields in Rn whose components
are smooth, Schwartz class, smooth and compactly supported functions, tensor field, tempered tensor field,
and compactly supported tensor field distributions, respectively. An analogous definition is valid when Sm

above is replaced by Tm.
The family of oriented lines in Rn is parameterized by

TSn−1 = {(x, ξ) ∈ Rn × Sn−1 : ⟨x, ξ⟩ = 0},
where ⟨·, ·⟩ denotes the standard dot product in Rn.

The alternation operator α with respect to two indices i1, i2 is defined by

α(i1 i2)ui1i2j1...jp =
1

2
(ui1i2j1...jp − ui2i1j1...jp).

For u ∈ Sk, we denote by iu : Sm → Sm+k the operator of symmetric multiplication by u and by
ju : Sm+k → Sm the operator dual to iu. These are given by

(iuf)i1...im+k
= σ(i1 . . . im+k)ui1...ikfik+1...ik+m

(2.1)

(jug)i1...im = gi1...im+k
uim+1...im+k . (2.2)

For the case in which u is the Euclidean metric tensor, we denote iu and ju by i and j respectively. In (2.2)
and henceforth, we use the Einstein summation convention, that when the indices are repeated, summation
in each of the repeating index varying from 1 up to the dimension n is assumed.

Next we define two important first order differential operators. The operator of inner differentiation or
symmetrized derivative is denoted as d : C∞(Rn;Sm) → C∞(Rn;Sm+1) given by

(df)i1...im+1
= σ(i1 . . . im+1)

∂fi1...im
∂xim+1

.

The divergence operator δ : C∞(Rn;Sm) → C∞(Rn;Sm−1) is defined by

(δf)i1...im−1
=
∂fi1...im
∂xim

. (2.3)

The operators d and −δ are formally dual to each other with respect to L2 inner product.

⟨u, v⟩ =
∫
ui1···imv

i1···im dx.

Note that the above definitions make sense for compactly supported tensor field distributions as well.
We now recall the solenoidal-potential decomposition of compactly supported symmetric tensor field

distributions [20]. Let n ≥ 2. For f ∈ E ′(Rn;Sm), there exist uniquely determined fields sf ∈ S ′(Rn;Sm)
and v ∈ S ′(Rn;Sm−1) tending to 0 at ∞ and satisfying

f =sf + dv, δsf = 0.

The fields sf and dv are called the solenoidal and potential components of f , respectively. The fields sf and
v are smooth outside supp f and satisfy the estimates

|sf(x)| ≤ C(1 + |x|)1−n, |v(x)| ≤ C(1 + |x|)2−n, |dv(x)| ≤ C(1 + |x|)1−n.
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Finally, we define the Saint-Venant operator W and the generalized Saint-Venant operator W k for 0 ≤
k ≤ m.

The Saint-Venant operator W : C∞(Rn;Sm) → C∞(Rn;Sm ⊗Sm) is the differential operator of order m
defined by

(Wf)i1...imj1...jm = σ(i1 . . . im)σ(j1 . . . jm)

m∑
p=0

(−1)p
(
m

p

)
∂mfi1...im−pj1...jp

∂xjp+1 . . . ∂xjm∂xim−p+1 , . . . ∂xim
, (2.4)

where Sm ⊗ Sm denotes the set of tensors symmetric with respect to the group of first and last m indices.
For our purposes, we will be using an equivalent formulation of the Saint-Venant operator using the

operator R : C∞(Rn;Sm) → C∞(Rn;T 2m) defined as follows: For f ∈ C∞(Rn;Sm),

(Rf)i1j1...imjm = α(i1j1) . . . α(imjm)
∂mfi1...im

∂xj1 . . . ∂xjm
. (2.5)

The tensor field R is skew-symmetric with respect to each pair of indices (i1, j1), . . . (im, jm), and symmetric
with respect to these pairs. The operators R and W are equivalent. More precisely,

(Wf)i1...imj1...jm = 2mσ(i1 . . . im)σ(j1 . . . jm)(Rf)i1j1...imjm (2.6)

(Rf)i1j1...imjm =
1

(m+ 1)
α(i1j1) . . . α(imjm)(Wf)i1...imj1...jm . (2.7)

We remark that in [20], these formulas have two minor typos; the factor 2m is missing in (2.6) and the
constant in (2.7) is incorrectly written as (m+ 1) on the right hand side.

We also need the following generalization [20] of the Saint-Venant operator.
For m ≥ 0 and 0 ≤ k ≤ m, the generalized Saint-Venant operator W k : C∞(Rn;Sm) → C∞(Rn;Sm−k ⊗

Sm) is defined as

(W kf)p1...pm−kq1...qm−ki1...ik =σ(p1, . . . , pm−k)σ(q1, . . . , qm−k, i1 . . . ik) (2.8)

m−k∑
l=0

(−1)l
(
m− k

l

)
∂m−kf i1...ikp1...pm−k−lq1...ql

∂xpm−k−l+1 . . . ∂xpm−k∂xql+1 . . . ∂xqm−k
,

where we adopt the notation from [16] and by f i1...ikp1...pm−k
, we mean a tensor field of order m − k with the

indices on the top fixed (i1 . . . ik here). Note that for k = 0, (2.8) agrees with (2.4), and for k = m, Wm = I
– the identity operator.

Next we define a generalization of the operator R as follows. For f ∈ C∞(Rn;Sm),

(Rkf)p1q1...pm−kqm−ki1...ik = α(p1q1) . . . α(pm−kqm−k)
∂m−kf i1...ikp1...pm−k

∂xq1 . . . ∂xqm−k

= R(f i1...ik)p1q1...pm−kqm−k
.

(2.9)

As with the equivalence of W and R, we show the equivalence of W k and Rk in Section 4.
Finally, note that the operators W,R,W k and Rk are well-defined for tensor field distributions as well.

2.2. Ray, momentum and transverse ray transforms. We now define the ray transform, momentum
and transverse ray transforms whose unique continuation properties we study in this paper. We initially
define these transforms on the space of smooth compactly supported symmetric tensor fields. These will be
extended to compactly supported tensor field distributions later.

The ray transform I is the bounded linear operator

Im : C∞
c (Rn;Sm) → C∞

c (TSn−1)

defined as follows:

Imf(x, ξ) =

∫
R

fi1···im(x+ tξ)ξi1 · · · ξim dt =

∫
R

⟨f(x+ tξ), ξm⟩dt (2.10)
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This can be naturally extended to points (x, ξ) ∈ Rn × Rn \ {0} using the same definition. We will denote
the extended operator by Jm : C∞

c (Rn;Sm) → C∞(Rn × Rn \ {0}):

Jmf(x, ξ) =

∫
fi1···im(x+ tξ)ξi1 · · · ξim dt.

In fact, the operators Im and Jm are equivalent. Restricting Jmf to points on TSn−1 determines Imf . For
the other way, we use the following homogeneity properties:

Jm(x, rξ) =
rm

|r|
(Jk

mf)(x, ξ) for r ̸= 0,

Jm(x+ sξ, ξ) = Jm(x, ξ).

From this we have

Jmf(x, ξ) = |ξ|m−1Imf

(
x− ⟨x, ξ⟩ξ

|ξ|2
,
ξ

|ξ|

)
for (x, ξ) ∈ Rn × Rn \ {0}.

The main reason for working with Jm instead of Im is that the partial derivatives
∂(Jf)

∂xi
and

∂(Jf)

∂ξi
are

well-defined for all 1 ≤ i ≤ n.
The momentum ray transforms are the bounded linear operators, Ikm : C∞

c (Rn;Sm) → C∞
c (TSn−1),

defined for each k ≥ 0 as

(Ikmf)(x, ξ) =

∞∫
−∞

tkfi1···im(x+ tξ)ξi1 · · · ξim dt. (2.11)

The operator I0m is of course the ray transform I defined above.
Similar to the case of ray transform, the momentum ray transforms can be extended for points (x, ξ) ∈

Rn × Rn \ {0}. The extended operators will be denoted by

Jk
m : C∞

c (Rn;Sm) → C∞(Rn × Rn\{0}) (2.12)

using the same definition. The operators Jk
m satisfy the following [10]:

(Jk
mf)(x, rξ) =

rm−k

|r|
(Jk

mf)(x, ξ) for r ̸= 0 (2.13)

(Jk
mf)(x+ sξ, ξ) =

k∑
l=0

(
k

l

)
(−s)k−l(J l

mf)(x, ξ) for s ∈ R. (2.14)

The data (I0mf, I
1
mf, . . . , I

k
mf) and (J0

mf, J
1
mf, . . . , J

k
mf) for 0 ≤ k ≤ m are equivalent ([10, Equations 2.5,

2.6]). As with the case of the ray transform, it is convenient to work with the operators Jk
m because the

partial derivatives
∂(Jk

mf)

∂xi
and

∂(Jk
mf)

∂ξi
are well-defined for all 1 ≤ i ≤ n.

For f ∈ C∞
c (Rn;Sm), we define the transverse ray transform. Let

TSn−1 ⊕ TSn−1 = {(ω, x, y) ∈ Sn−1 × Rn × Rn : ω · x = 0, ω · y = 0}

be the Whitney sum.
The transverse ray transform T : C∞

c (Rn;Sm) → C∞(TSn−1⊕TSn−1) is the bounded linear map defined
by

T f(ω, x, y) =
∫
R
fi1···im(x+ tω)yi1 · · · yim dt. (2.15)

2.3. Normal operators. Next we extend the definitions of the ray transforms to compactly supported
tensor field distributions. We also define the corresponding normal operators.

For the case of ray transform (2.10), the definition can be extended to compactly supported tensor field
distributions as done in [20]:

For f ∈ E ′(Rn;Sm), we define Imf ∈ E ′(TSn−1) as

⟨Imf, φ⟩ = ⟨f, I∗mφ⟩ for φ ∈ C∞(TSn−1),
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where

(I∗m)i1···im φ(x) =

∫
Sn−1

ξi1 · · · ξimφ(x− ⟨x, ξ⟩ξ, ξ) dSξ.

Here and henceforth, dSξ is the Euclidean surface measure on the unit sphere.

Similarly, if we work with Jm, we can define Jmf for f ∈ E ′(Rn;Sm) using the following formal L2 adjoint:

(J∗
m)i1···im φ(x) =

∫
Sn−1

∫
R

ξi1 · · · ξimφ(x− tξ, ξ)dtdSξ for φ ∈ C∞
c (Rn × Sn−1).

The normal operator Nmf = I∗mImf has the following integral representation [20].

(Nmf)i1···im = 2fj1···jm ∗

(
x⊙2m

)
j1···jmi1···im

∥x∥2m+n−1
. (2.16)

This representation makes sense for f ∈ E ′(Rn;Sm) as the convolution of a compactly supported distribution
and a tempered distribution.

Next we define momentum ray transform of compactly supported tensor distributions. This was studied
recently in the context of an inverse problem for polyharmonic operators in [2]. We work in a slightly different
context here and for this reason, we give the details.

Let us first derive a representation for the formal L2 adjoint
(
Ikm
)∗

of Ikm. Consider for f ∈ C∞
c (Rn) and

g ∈ C∞(TSn−1)

⟨Ikmf, g⟩TSn−1 = ⟨f, (Ikm)∗g⟩Rn

=

∫
Sn−1

∫
ξ⊥

(Ikmf)(x, ξ) g(x, ξ) dx dSξ

=

∫
Sn−1

∫
ξ⊥

∞∫
−∞

tk ⟨f(x+ tξ), ξm⟩dt g(x, ξ) dxdSξ

=

∫
Sn−1

∫
Rn

⟨z, ξ⟩k ⟨f(z), ξm⟩ g(z − ⟨z, ξ⟩ξ, ξ) dz dSξ,

where we employed the change of variables x + tξ = z for x ∈ ξ⊥ and t ∈ R for each fixed ξ ∈ Sn−1. Now
interchanging the order of integration

⟨f, (Ikm)∗g⟩Rn =

∫
Rn

fi1...im(z)


∫

Sn−1

⟨z, ξ⟩kξi1 . . . ξim g(z − ⟨z, ξ⟩ξ, ξ) dξ

 dz.

Thus the formal L2-adjoint of Ikm, (Ikm)∗ : C∞(TSn−1) → C∞(Rn;Sm) is given by the expression

(Ikm)∗gi1...im(x) =

∫
Sn−1

⟨x, ξ⟩k ξi1 · · · ξim g(x− ⟨x, ξ⟩ξ, ξ) dSξ. (2.17)

Using this we can extend momentum ray transforms for compactly supported tensor field distributions as
follows. Ikm : E ′(Rn;Sm) → E ′(TSn−1) given by

⟨Ikmf, g⟩ = ⟨f, (Ikm)∗g⟩ (2.18)

for f ∈ E ′(Rn;Sm) and g ∈ C∞(TSn−1).
Similarly, if we work with Jk

m, then for f ∈ E ′(Rn;Sm), Jk
mf can be defined as follows:

⟨Jk
mf, g⟩ = ⟨f, (Jk

m)∗g⟩
where

(Jk
m)∗i1···img(x) =

∫
Sn−1

∫
R

tkg(x− tξ, ξ)ξi1 · · · ξim dtdSξ for g ∈ C∞
c (Rn × Sn−1).
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We next study normal operators of momentum ray transforms. Let us denoteNk
m = (Ikm)∗Ikm : C∞

c (Rn;Sm) →
C∞(Rn;Sm) be the normal operator of the kth momentum ray transform of a symmetric m-tensor field. By
(2.17),

(Nk
m f)i1...im(x) = (Ikm)∗i1···im Ikm f (x)

=

∫
Sn−1

⟨x, ξ⟩k ξi1 . . . ξim Ikf(x− ⟨x, ξ⟩ξ, ξ) dSξ.

Note that for x ∈ Rn and ξ ∈ Sn−1, (x− ⟨x, ξ⟩ξ, ξ) ∈ TSn−1. Since Ikm and Jk
m agree on TSn−1, we have

(Nk
m f)i1...im(x) =

∫
Sn−1

⟨x, ξ⟩k ξi1 . . . ξim Jk
mf(x− ⟨x, ξ⟩ξ, ξ) dSξ. (2.19)

Using (2.14), we have

(Nk
m f)i1...im(x) =

k∑
l=0

(
k

l

) ∫
Sn−1

⟨x, ξ⟩2k−lξi1 . . . ξim(J l
mf)(x, ξ) dSξ

=

k∑
l=0

(
k

l

) ∫
Sn−1

∞∫
−∞

⟨x, ξ⟩2k−l ξi1 . . . ξim tl fj1...jm(x+ tξ)ξj1 . . . ξjm dtdSξ

= 2

k∑
l=0

(
k

l

) ∫
Sn−1

∞∫
0

⟨x, ξ⟩2k−l ξi1 . . . ξim tl fj1...jm(x+ tξ)ξj1 . . . ξjm dtdSξ.

Consider the change of variable x+ tξ = y to obtain t = |y − x|, ξ = y − x

|y − x|
. We have

(Nk
mf)i1...im(x)

= 2

k∑
l=0

(
k

l

)∫
Rn

⟨x, y − x

|y − x|
⟩2k−l

((
y − x

|y − x|

)⊙2m
)

i1...imj1...jm

fj1...jm(y)
|y − x|l

|y − x|n−1
dy.

Note that for x, z ∈ Rn, we can write ⟨x, z⟩r = jx⊙rz⊙r. Then we can write

(Nk
mf)i1...im(x) = 2

k∑
l=0

(
k

l

)∫
Rn

(
jx⊙2k−l(y − x)⊙2m+2k−l

)
i1···imj1···jm

fj1...jm(y)

|y − x|2m+2k−2l+n−1
dy.

This gives

(Nk
mf)i1...im(x) = 2

k∑
l=0

(
k

l

)
(−1)lx⊙2k−l

p1···p2k−l

[
fj1...jm ∗

(
x⊙2m+2k−l

)
p1···p2k−li1···imj1...jm

|x|2m+2k−2l+n−1

]
. (2.20)

Equation (2.20) makes sense for f ∈ E ′(Rn;Sm) as well. For f ∈ E ′(Rn;Sm), Nk
m : E ′(Rn;Sm) → D′(Rn;Sm)

can be viewed as a multiplication of a smooth function with the convolution of a compactly-supported
distribution and a tempered distribution.

We will use in our calculations the divergence of the normal operator of momentum ray transforms given
by

(δNk
mf)i1...im−1(x) = k

∫
Sn−1

⟨x, ξ⟩k−1 ξi1 . . . ξim−1 J
kf(x− ⟨x, ξ⟩ξ, ξ) dSξ. (2.21)

This can be obtained by directly applying the divergence operator to (2.19). Iterating, we get the formula

(δrNk
mf)i1...im−r

(x) =
k!

(k − r)!

∫
Sn−1

⟨x, ξ⟩k−r ξi1 . . . ξim−r
Jkf(x− ⟨x, ξ⟩ξ, ξ) dSξ
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=
k!

(k − r)!

k∑
l=0

(
k

l

) ∫
Sn−1

⟨x, ξ⟩2k−r−l ξi1 . . . ξim−r J
lf(x, ξ) dSξ.

In particular,

(δkNk
mf)i1...im−k

(x) = k!

k∑
l=0

(
k

l

) ∫
Sn−1

⟨x, ξ⟩k−l ξi1 . . . ξim−k
J lf(x, ξ) dSξ, (2.22)

and
δk+1Nk

mf = 0. (2.23)

To conclude this section, we remark that our approach for proving a unique continuation principle for
the transverse ray transform on symmetric tensor fields is based on the analysis for the ray transform of
scalar functions/distributions, and since we already know to handle this case, we do not define transverse
ray transform of symmetric tensor field distributions separately.

We are now ready to state the main results of the article.
We say a function ψ vanishes to infinite order at a point x0 ∈ Rn if ψ is smooth in a neighborhood of x0

and ψ along with its partial derivatives of all orders vanishes at x0, that is, ∂
α
xψ(x0) = 0 for all multi-indices

α.

Theorem 2.1 (UCP for ray transform I). Let U ⊆ Rn be any non empty open set and n ≥ 2. Let
f ∈ E ′(Rn;Sm) be such that Rf |U = 0 and Nmf vanishes to infinite order at some x0 ∈ U . Then f is a
potential field, that is, there exists a v ∈ E ′(Rn;Sm−1) such that f = dv.

Theorem 2.2 (UCP for ray transform II). Let U ⊆ Rn be any non empty open set and n ≥ 2. Let
f ∈ E ′(Rn;Sm) be such that Rf = 0 and Nmf = 0 in U . Then f is a potential field.

Corollary 2.3 (UCP for ray transform III). Let U ⊆ Rn be open. Let f ∈ E ′(Rn;Sm) be such that Rf |U = 0
and the ray transform of f vanishes on all lines passing through U , that is, Jmf(x, ξ) = 0 for x ∈ U, ξ ∈ Sn−1.
Then f is a potential field.

Theorem 2.4 (UCP for momentum ray transform I). Let U ⊆ Rn. Let f ∈ E ′(Rn;Sm) be such that for
some 0 ≤ k ≤ m, Rkf |U = 0. If Np

mf |U = 0 for all 0 ≤ p ≤ k, then f is a generalized potential field, that is,
there exists a v ∈ E ′(Rn;Sm−k−1) such that f = dk+1v.

Theorem 2.5 (UCP for momentum ray transform II). Let U ⊆ Rn and f ∈ E ′(Rn;Sm). Suppose for some
0 ≤ k ≤ m, Rkf |U = 0 and Jk

mf(x, ξ) = 0 for all (x, ξ) ∈ U × Sn−1, then f is a generalized potential tensor
field.

In all the results above the support of v is contained in the convex hull of the support of f .

Theorem 2.6 (UCP for transverse ray transform). Let n ≥ 3 and f ∈ E ′(Rn;Sm). Assume that T f = 0
along all the lines intersecting a non-empty open set U and f = 0 in U . Then f ≡ 0.

3. ucp for the ray transform

In this section, we prove unique continuation properties for the ray transforms. We prove Theorem 2.1.
We first show that Nmf is smooth in U if Rf |U = 0.

Lemma 3.1. Let f ∈ E ′(Rn;Sm) be such that Rf |U = 0 for some open set U ⊆ Rn. Then, Nmf |U is
smooth.

Proof. We use the following formula proved in [3, Theorem 2.5] for f ∈ S(Rn;Sm):

∆m(sf) = 2mδme Rf, (3.1)

where δe is the even indices divergence operator [3, (2.4)] and sf is the solenoidal component of f . In (3.1),
the formula is interpreted componentwise. The same proof works for f ∈ E ′(Rn;Sm) as well. By hypothesis,
the right hand side of (3.1) is 0 in U , and hence ∆m (sf) = 0. By Weyl’s Lemma [21], sf is smooth in U ,
and hence so is Nm

sf . Since Nmf = Ns
mf ; see [20], we are done. □

Now we will only prove Theorem 2.1. Theorem 2.2 is a trivial consequence. The idea of proof is to reduce
the problem to that of the functions case as in [7]. The following proposition serves as the key ingredient.
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Proposition 3.2. For f ∈ E ′(Rn;Sm), the following equality holds:

m!N0(Rf)i1j1...imjm =

⌊m
2 ⌋∑

l=0

cl,m(R(iljlNmf))i1j1...imjm , (3.2)

where ⌊x⌋ denotes the greatest integer function ≤ x and the constants cl,m are given by

cl,m =

{
m−l−1∏
p=0

(n− 1 + 2p)

}
(−1)lm!

2l l! (m− 2l)!
.

Remark 3.3. An inversion formula recovering the Saint-Venant operator of f from its ray transform is
proved in [20, Theorem 2.12.3]. From (3.2), one can derive this inversion formula. However, our approach
here is different and in our opinion simpler than that of [20, Theorem 2.12.3].

To prove this proposition we first prove a technical result, see Lemma 3.5, which will be used in the next
two sections. We first recall the definition of a positive homogeneous function.

A function g is called positive homogeneous of degree λ if

g(rx) = rλg(x)

for all x ∈ Rn, and r > 0.
The following lemma was recently used in [13] as well.

Lemma 3.4. If g is smooth and positive homogeneous of degree λ such that n+ λ > 0, then∫
Sn−1

g(ξ) dSξ = (n+ λ)

∫
|ξ|≤1

g(ξ) dξ.

Proof. Using polar coordinates, we have∫
|ξ|≤1

g(ξ) dξ =

1∫
0

∫
Sn−1

g(rξ)rn−1 dSξ dr

=

1∫
0

∫
Sn−1

rn+λ−1g(ξ)dSξ dr

=
1

(n+ λ)

∫
Sn−1

g(ξ)dSξ.

□

Lemma 3.5. Let n ≥ 2 and g be a smooth function on Rn such that g is positive homogeneous of degree
s− 1 for some s ∈ N. Then the following equality holds:∫

Sn−1

∂sg

∂ξi1 . . . ∂ξis
dSξ =

⌊ s
2 ⌋∑

l=0

cl,s

∫
Sn−1

iljl
(
ξ⊙s
)
i1···is

g(ξ) dSξ, (3.3)

with the constants cl,s given by

cl,s =

(s−l−1)∏
w=0

(n− 1 + 2w)
(−1)l s!

2l l! (s− 2l)!
. (3.4)

Proof. The proof proceeds by induction on s. We first prove (3.3) for s = 1.
For a smooth function g positive homogeneous of degree 0, we have from Lemma 3.4,∫

Sn−1

∂g

∂ξi
dSξ = (n− 1)

∫
|ξ|≤1

∂g

∂ξi
dξ,
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since
∂g

∂ξi
is positive homogeneous of degree −1. Now applying the divergence theorem, we get,∫

|ξ|≤1

∂g

∂ξi
dξ =

∫
Sn−1

ξig(ξ)dSξ.

Hence ∫
Sn−1

∂g

∂ξi
dSξ = (n− 1)

∫
Sn−1

ξig(ξ)dSξ. (3.5)

For s = 1, the only choice for l is 0 and c0,1 = n− 1 in (3.4). Thus for s = 1 (3.3) agrees with (3.5).

Now assume that (3.3) is true for some s = r−1. We want to show that the equality (3.3) holds for s = r.

Let g be a positive homogeneous of degree r− 1. Then,
∂g

∂ξir
is positive homogeneous of degree r− 2 and

by induction hypothesis we obtain∫
Sn−1

∂rg

∂ξi1 . . . ∂ξir
dSξ =

⌊ r−1
2 ⌋∑

l=0

cl,r−1

 ∫
Sn−1

iljl
(
ξ⊙r−1

)
i1···ir−1

∂g

∂ξir
dSξ

 .

Note that iljl(ξ⊙r−1)
∂g

∂ξir
is a positive homogeneous function of degree 2r − 2l − 3. Applying Lemma 3.4

and using Gauss divergence theorem, we get∫
Sn−1

∂rg

∂ξi1 . . . ∂ξir
dSξ =

⌊ r−1
2 ⌋∑

l=0

cl,r−1(n+ 2r − 2l − 3)

[
−
∫

|ξ|≤1

(
∂

∂ξir
iljl

(
ξ⊙r−1

)
i1···ir−1

)
g(ξ) dξ (3.6)

+

∫
Sn−1

iljl
(
ξ⊙r−1

)
i1···ir−1

ξir g(ξ) dSξ

]
.

We now use Lemma 3.4 in the first integral in (3.6) and obtain∫
Sn−1

∂rg

∂ξi1 . . . ∂ξir
dSξ =

⌊ r−1
2 ⌋∑

l=0

cl,r−1(n+ 2r − 2l − 3)

∫
Sn−1

iljl
(
ξ⊙r−1

)
i1···ir−1

ξirg(ξ) dSξ

−
⌊ r−1

2 ⌋∑
l=0

cl,r−1

∫
Sn−1

(
∂

∂ξir
iljl

(
ξ⊙r−1

)
i1···ir−1

)
g(ξ) dSξ,

(3.7)

We separate the l = 0 term from the first sum, and l = ⌊r − 1

2
⌋ term from the second sum in (3.7) to get∫

Sn−1

∂rg

∂ξi1 . . . ∂ξir
dSξ = c0,r−1(n+ 2r − 3)

∫
Sn−1

ξi1 . . . ξir g(ξ) dSξ

+

⌊ r−1
2 ⌋∑

l=1

cl,r−1(n+ 2r − 2l − 3)

∫
Sn−1

iljl
(
ξ⊙r−1

)
i1···ir−1

ξir g(ξ) dSξ

−
⌊ r−1

2 ⌋−1∑
l=0

cl,r−1

∫
Sn−1

(
∂

∂ξir
iljl

(
ξ⊙r−1

)
i1···ir−1

)
g(ξ) dS(ξ)

− c⌊ r−1
2 ⌋,r−1

∫
Sn−1

(
∂

∂ξir
i⌊

r−1
2 ⌋j⌊

r−1
2 ⌋ (ξ⊙r−1

)
i1···ir−1

)
g(ξ) dSξ.

(3.8)

We analyze the integrals in (3.8) separately.
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Since c0,r−1(n+ 2r − 3) = c0,r, we have

c0,r−1(n+ 2r − 3)

∫
Sn−1

ξi1 . . . ξir g(ξ) dSξ = c0,r

∫
Sn−1

ξi1 . . . ξir g(ξ) dSξ. (3.9)

Next we analyze the last term in (3.8). First we consider the case of odd r. Letting r = 2k + 1, we have

⌊r − 1

2
⌋ = k. Then we have

ikjk
(
ξ⊙2k

)
i1···i2k

= σ(i1 · · · i2k)
(
δi1i2 · · · δi2k−1i2k

)
.

Hence for r odd, the last term in (3.8) is 0.

Next we consider the case when r is even. Letting r = 2k, we have ⌊r − 1

2
⌋ = k − 1 = ⌊r

2
⌋ − 1. This

implies

c⌊ r−1
2 ⌋,r−1 =

r−k−1∏
w=0

(n− 1 + 2w)
(−1)k−1 (r − 1)!

2k−1 (k − 1)! 1!

= −
r−k−1∏
w=0

(n− 1 + 2w)
(−1)k r!

2k k!
using r = 2k,

= −ck,r = −c⌊ r
2 ⌋,r.

We have

∂

∂ξir

(
ik−1jk−1

(
ξ⊙2k−1

)
i1···i2k−1

)
=

∂

∂ξir
σ(i1 · · · i2k−1)

(
δi1i2 · · · δi2k−3i2k−2

ξi2k−1

)
= σ(i1 · · · i2k−1)

(
δi1i2 · · · δi2k−3i2k−2

δi2k−1i2k

)
.

We observe, recalling that r = 2k,

σ(i1 · · · ir−1){δi1i2 · · · δir−1ir} = σ(i1 · · · ir){δi1i2 · · · δir−1ir}.

Therefore,

∂

∂ξir

(
ik−1jk−1

(
ξ⊙2k−1

)
i1···i2k−1

)
= ikjk

(
ξ⊙2k

)
i1···i2k

.

Summarizing, we have,

−c⌊ r−1
2 ⌋,r−1

∫
Sn−1

∂

∂ξir

(
i⌊

r−1
2 ⌋j⌊

r−1
2 ⌋ (ξ⊙r

)
i1···ir

)
g(ξ)dSξ

=


0 if r is odd

c⌊ r
2 ⌋,r

∫
Sn−1

i⌊
r
2 ⌋j⌊

r
2 ⌋
(
ξ⊙r
)
i1···ir

g(ξ) dSξ if r is even.

(3.10)

We now consider the remaining terms in (3.7):

⌊ r−1
2 ⌋∑

l=1

cl,r−1(n+ 2r − 2l − 3)

∫
Sn−1

iljl
(
ξ⊙r−1

)
i1···ir−1

ξir g(ξ) dSξ

−
⌊ r−1

2 ⌋−1∑
l=0

cl,r−1

∫
Sn−1

(
∂

∂ξir
iljl

(
ξ⊙r−1

)
i1···ir−1

)
g(ξ) dSξ = I (say)
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Re-indexing the second integral above we obtain

I =

⌊ r−1
2 ⌋∑

l=1

cl,r−1(n+ 2r − 2l − 3)

∫
Sn−1

iljl
(
ξ⊙r−1

)
i1···ir−1

ξir g(ξ) dSξ

−
⌊ r−1

2 ⌋∑
l=1

cl−1,r−1

∫
Sn−1

(
∂

∂ξir
il−1jl−1

(
ξ⊙r−1

)
i1···ir−1

)
g(ξ) dSξ.

(3.11)

Note that cl,r−1(n + 2r − 2l − 3) =
r − 2l

r
cl,r and −cl−1,r−1 =

2l

r(r − 2l + 1)
cl,r. Combining this with

(3.11) we get

I =

⌊ r−1
2 ⌋∑

l=1

cl,r
r

{
(r − 2l)

∫
Sn−1

iljl
(
ξ⊙r−1

)
i1···ir−1

ξir g(ξ) dSξ

+
2l

r − 2l + 1

∫
Sn−1

(
∂

∂ξir
il−1jl−1

(
ξ⊙r−1

)
i1···ir−1

)
g(ξ) dSξ

}
.

Finally, we observe the following: for 0 ≤ l ≤ ⌊r − 1

2
⌋,

∫
Sn−1

iljlξ⊙r
i1···ir g(ξ) dξ =

(r − 2l)

r

∫
Sn−1

iljl
(
ξ⊙r−1

)
i1···ir−1

ξir g(ξ) dSξ (3.12)

+
2l

r(r − 2l + 1)

∫
Sn−1

∂

∂ξir

(
il−1jl−1

(
ξ⊙r−1

)
i1···ir−1

)
g(ξ) dSξ.

This can be seen by expanding the left hand side expression,

iljl
(
ξ⊙r
)
i1···ir

= σ(i1 · · · ir)
(
δi1i2 · · · δi2l−1i2lξi2l+1

· · · ξir
)
.

The first term comes from those permutations that takes ir to one of i2l+1 · · · ir and the second term comes
from the complement.

Finally, substituting (3.9), (3.10) and (3.12) into (3.8) we get (3.3) for s = r. This completes the proof. □

Proof of Proposition 3.2. We prove (3.2) for f ∈ C∞
c (Rn;Sm) first.

By an iteration of [20, Equation 2.10.2]

(−2)mm! I0((Rf)i1j1···imjm) = Ji1j1 · · · Jimjm(Jmf), (3.13)

where the ray transform acts on the scalar function (Rf)i1j1···imjm on the left hand side and for each
1 ≤ i, j ≤ n the John operator [8] Jij is defined, for functions φ ∈ C∞(Rn × Rn\{0}), by

Jijφ(x, ξ) =

(
∂2φ

∂xi∂ξj
− ∂2φ

∂xj∂ξi

)
. (3.14)

Integrating both sides of (3.13) over Sn−1,

(−2)mm!N0((Rf)i1j1...imjm) = 2mα(i1j1) . . . α(imjm)
∂m

∂xi1 . . . ∂xim

∫
Sn−1

∂mJmf(x, ξ)

∂ξj1 . . . ∂ξjm
dSξ.

Using Lemma 3.5,

(−2)mm!N0((Rf)i1j1...imjm)

= 2mα(i1j1) . . . α(imjm)
∂m

∂xi1 . . . ∂xim

⌊m
2 ⌋∑

l=0

cl,m
( ∫
Sn−1

(
iljl

(
ξ⊙m

)
j1···jm

Jmf(x, ξ) dSξ
))
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= 2m
⌊m

2 ⌋∑
l=0

cl,mR
(
iljlNmf

)
i1j1···imjm

.

Now using anti-symmetry of R on the right hand side, we get (3.2). The proof for f ∈ C∞
c (Rn;Sm) is

complete. The proof for f ∈ E ′(Rn;Sm) follows by integral representation for the normal operator Nm; see
(2.16), the density of C∞

c (Rn;Sm) in E ′(Rn;Sm) combined with the fact that convolution:

(u, v) → u ∗ v from E ′(Rn)×D′(Rn) → D′(Rn),

is a separately continuous bilinear map. See [22, Theorem 27.6].
□

With the preliminary results in place, we prove the unique continuation results for the ray transform of
symmetric tensor fields below.

Proof of Theorem 2.1. By Lemma 3.1, the hypothesis Rf |U = 0 implies that the normal operator Nmf is
smooth in U . Also, Nmf vanishes to infinite order at x0 ∈ U . Thus, by (3.2), N0(Rf)i1j1...imjm is smooth
in U and vanishes to infinite order at x0 ∈ U . Using [6, Theorem 1.1], we conclude that (Rf)i1j1...jmjm ≡ 0.
Since this is true for all indices i1, j1, . . . im, jm, Rf vanishes identically on Rn, which is equivalent to Wf
vanishing on Rn. Thus by [20, Theorem 2.5.1], there exists a field v ∈ E ′(Rn;Sm−1) whose support is
contained in the convex hull of support of f and f = dv. □

The proof of Theorem 2.2 follows as a direct consequence of Theorem 2.1.

Proof of Corollary 2.3. Since Jmf(x, ξ) = 0 for x ∈ U and ξ ∈ Sn−1, using homogeneity properties, we know
Imf (x− ⟨x, ξ⟩ξ, ξ) and hence we have that Nmf(x) = 0 for all x ∈ U . This in particular implies that Nmf
is smooth in U and, trivially, vanishes to infinite order at any point x0 ∈ U . The conclusion follows from
Theorem 2.1. □

We also present a much simpler proof working directly with the ray transform.

Alternate proof of Corollary 2.3. Since Imf(x, ξ) = 0 for all ξ ∈ Sn−1 and x ∈ U , the left hand side of (3.13)
vanishes, and hence so does the right hand side. Since f ∈ E ′(Rn;Sm), (Rf)i1j1...imjm ∈ E ′(Rn) and thus by
[6, Theorem 1.2], Rf vanishes identically on Rn. The proof now follows from [20, Theorem 2.5.1]. □

4. ucp for momentum ray transforms

In this section we study unique continuation for momentum ray transforms. We prove an analogue of
the identity proved for ray transforms (Proposition 3.2), for momentum ray transforms in Proposition 4.4
below. We first show the equivalence of Rk and W k and then we prove a lemma required in the proof of
Proposition 3.2.

Lemma 4.1. Let f ∈ D′(Rn;Sm) and U ⊆ Rn be open. Then for 0 ≤ k ≤ m, W kf |U = 0 if and only if
Rkf |U = 0. In fact, the following equalities hold

(W kf)p1...pm−kq1...qm−ki1...ik = 2m−kσ(q1 . . . qm−ki1 . . . ik)σ(p1 . . . pm−k) (4.1)

(Rkf)p1q1...pm−kqm−ki1...ik

(Rkf)p1q1...pm−kqm−ki1...ik =
1

m− k + 1

(
m

k

)
α(p1q1) . . . α(pm−kqm−k) (4.2)

(W kf)p1...pm−kq1...qm−ki1...ik .

Proof. We present the proof using similar ideas from [20, Lemma 2.4.2]. From [16, Equation 27] we obtain

(W kf)p1...pm−kq1...qm−ki1...ik = σ(q1 . . . qm−ki1 . . . ik)(Wf i1...ik)p1...pm−kq1...qm−k
.

Using (2.6) for an m− k-tensor field f i1...ik we get (4.1).
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Now, we prove (4.2). Decomposing the symmetrizations σ(p1 . . . pm−k) and σ(q1 . . . qm−ki1 . . . ik) in the
definition of W k with respect to the indices pm−k and qm−k and taking into account the symmetries of f
and mixed partial derivatives, we get

(W kf)p1...pm−kq1...qm−ki1...ik = σ(p1 . . . pm−k−1)σ(q1 . . . qm−k−1i1 . . . ik)

m−k∑
l=0

(−1)l
(
m− k

l

)
1

m(m− k)

×
[
(m− k − l)2

∂m−kf i1...ikp1...pm−k−l−1pm−kq1...ql

∂xpm−k−l
. . . ∂xpm−k−1

∂xql+1
. . . ∂xqm−k

+ l2
∂m−kf i1...ikp1...pm−k−lq1...ql−1qm−k

∂xpm−k−l+1
. . . ∂xpm−k

∂xql . . . ∂xqm−k−1

+ h

]
,

where h is some tensor symmetric in pm−k, qm−k. Applying the operator α(pm−k qm−k) to this equality and
noting that it commutes with σ(p1 . . . pm−k−1) and σ(q1 . . . qm−k−1i1 . . . ik), we obtain

α(pm−k qm−k)(W
kf)p1...pm−kq1...qm−ki1...ik = α(pm−k qm−k)σ(p1 . . . pm−k−1)σ(q1 . . . qm−k−1i1 . . . ik)

m−k∑
l=0

(−1)l
(
m− k

l

)
1

m(m− k)

×
[
(m− k − l)2

∂m−kf i1...ikp1...pm−k−l−1pm−kq1...ql

∂xpm−k−l
. . . ∂xpm−k−1

∂xql+1
. . . ∂xqm−k

− l2
∂m−kf i1...ikp1...pm−k−lpm−kq1...ql−1

∂xpm−k−l+1
. . . ∂xpm−k−1

∂xql . . . ∂xqm−k

]
,

where we interchanged pm−k and qm−k in the last term, contributing to the negative sign.
Combining the first summand in the brackets of the l-th term of the sum with the second summand of

the (l + 1)-th term, we get

α(pm−k qm−k)(W
kf)p1...pm−kq1...qm−ki1...ik

=
m− k + 1

m
α(pm−k qm−k)σ(p1 . . . pm−k−1)σ(q1 . . . qm−k−1i1 . . . ik)

m−k−1∑
l=0

(−1)l
(
m− k − 1

l

)
∂m−kf i1...ikp1...pm−k−l−1pm−k

q1 . . . ql

∂xpm−k−l
. . . ∂xpm−k−1

∂xql+1
. . . ∂xqm−k

=
m− k + 1

m
α(pm−kqm−k)

∂

∂xqm−k

(W kfpm−k)p1...pm−k−1q1...qm−k−1i1...ik ,

where on the right hand side W k acts on the (m − 1)-tensor field obtained by fixing the index pm−k in f .
Iterating this (m− k)-times, we get

α(p1q1) . . . α(pm−kqm−k)(W
kf)p1...pm−kq1...qm−ki1...ik =

(m− k + 1)(
m
k

) α(p1q1) . . . α(pm−kqm−k) (4.3)

∂m−k

∂xq1 . . . ∂xqm−k

(W kfp1...pm−k)i1...ik .

Finally, note that on the right hand side, W k acts on the k-tensor obtained by fixing (m− k)-indices. Since
by our convention, W k acting on k-tensors is just the identity operator, (4.2) follows. □

Remark 4.2. From the expression for Rk in (2.9), it is clear that given Rk for some 0 ≤ k ≤ m, we can
recover Rs for all 0 ≤ s < k. Since W k and Rk are equivalent, we can recover W s for 0 ≤ s ≤ k as well.

Lemma 4.3. Let f ∈ C∞
c (Rn;Sm). For m ≥ 0 and 0 ≤ k ≤ m,∫

Sn−1

ξi1 . . . ξim−k
(Jk

mf)(x, ξ) dSξ =

k∑
r=0

(−1)k−r 1

r!

(
k

r

)
(jx⊙k−rδrNr

mf)i1···im−k
, (4.4)

where the operator j is given in (2.2) and δ is given in (2.3).
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Proof. We prove this result by induction on k. For k = 0, (4.4) is just the definition of the normal operator
of the ray transform of a symmetric m-tensor field f given in (2.19).

Now assume that (4.4) is true for all 0, 1, . . . , k − 1 and we want to prove this for k. By (2.22), we have,∫
Sn−1

ξi1 . . . ξim−k
(Jk

mf)(x, ξ) dSξ =
1

k!
(δkNk

mf)i1...im−k
(x)

−
k−1∑
l=0

(
k

l

) ∫
Sn−1

⟨x, ξ⟩k−lξi1 . . . ξim−k
(J l

mf)(x, ξ) dSξ.

Since ⟨x, ξ⟩r = jx⊙rξ⊙r, we have, together with the induction hypothesis,∫
Sn−1

ξi1 . . . ξim−k
(Jk

mf)(x, ξ) dSξ

=
1

k!
(δkNk

mf)i1...im−k
(x)−

k−1∑
l=0

(
k

l

)
jx⊙k−l

 ∫
Sn−1

ξi1 . . . ξim−k
ξ⊙k−l(J l

mf)(x, ξ)dSξ


=

1

k!
(δkNk

mf)i1...im−k
(x)−

k−1∑
l=0

(
k

l

) l∑
r=0

(−1)l−r 1

r!

(
l

r

)
(jx⊙k−rδrNr

mf)i1...im−k

Interchanging the order of summation in the second term,

=
1

k!
(δkNk

mf)i1...im−k
(x)−

k−1∑
r=0

1

r!
(jx⊙k−rδrNr

mf)i1···im−k

k−1∑
l=r

(
k

l

)
(−1)l−r

(
l

r

)
. (4.5)

We note that
k∑

l=r

(−1)l−r

(
k

l

)(
l

r

)
= 0. (4.6)

This is obtained by differentiating the binomial expansion of (1+x)k, r number of times and letting x = −1.

From (4.6), we have

k−1∑
l=r

(
k

l

)
(−1)l−r

(
l

r

)
= (−1)k−r+1

(
k

r

)
. Combining this with (4.5) we get

∫
Sn−1

ξi1 . . . ξim−k
(Jk

mf)(x, ξ) dSξ =

k∑
r=0

(−1)k−r 1

r!

(
k

r

)
(jx⊙k−rδrNr

mf)i1···im−k
.

This completes the proof. □

Proposition 4.4. For f ∈ E ′(Rn;Sm),

m!N0((Rf
i1...ik)p1q1...pm−kqm−k

)

= σ(i1 . . . ik)

k∑
r=0

(−1)r
(
k

r

)
∂r

∂xi1 . . . ∂xir
(Rk(Gm−r))p1q1...pm−kqm−kir+1...ik ,

(4.7)

where Gm−r is a symmetric (m− r)-tensor given as

(Gm−r)ir+1...ikq1...qm−k
=

⌊m−r
2 ⌋∑

l=0

cl,m−r i
ljl

(
r∑

p=0

(−1)r−p 1

p!

(
r

p

)
(jx⊙r−pδpNp

mf)ir+1...ikq1...qm−k

)
.

Proof. As in the proof of Proposition 3.2, we prove the identity for f ∈ C∞
c (Rn;Sm).

We begin with the following relation which can be shown in exactly the same way as in (3.13) by considering
the ray transform of the m − k symmetric tensor field obtained by fixing the indices i1, · · · , ik and then
applying the John operator m− k times

(m− k)!(−2)m−kI0((Rf
i1...ik)p1q1...pm−kqm−k

) = Jp1q1 · · · Jpm−kqm−k
Im−k

(
f i1...ik

)
. (4.8)
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Substituting the expression for J0
m−kf

i1...ik from [16, Lemma 4.2] we get

(−2)m−k(m− k)! J0
0 ((Rf

i1...ik)p1q1...pm−kqm−k
)

= 2m−kα(p1q1) . . . α(pm−kqm−k)
∂2m−2k

∂xp1
. . . ∂xpm−k

∂ξq1 . . . ∂ξqm−k[
(m− k)!

m!
σ(i1 . . . ik)

k∑
r=0

(−1)r
(
k

r

)
∂kJr

mf

∂xi1 . . . ∂xir∂ξir+1 . . . ∂ξik

]
.

Integrating both sides over Sn−1, we get

(−1)m−k(m− k)!N0((Rf
i1...ik)p1q1...pm−kqm−k

)

= α(p1q1) . . . α(pm−kqm−k)
(m− k)!

m!
σ(i1 . . . ik)[

k∑
r=0

(−1)r
(
k

r

)
∂m−k+r

∂xi1 . . . ∂xir∂xp1
. . . ∂xpm−k{ ∫

Sn−1

∂m−rJr
mf

∂ξir+1
. . . ∂ξik∂ξq1 . . . ∂ξqm−k

dSξ

}]
.

Since Jr
mf is a homogeneous function of degree m− r − 1 in the ξ variable, using Lemma 3.5, we have

(−1)m−k(m− k)!N0
0 ((Rf

i1...ik)p1q1...pm−kqm−k
)

= α(p1q1) . . . α(pm−kqm−k)
(m− k)!

m!
σ(i1 . . . ik)×[

k∑
r=0

(−1)r
(
k

r

)
∂m−k+r

∂xi1 . . . ∂xir∂xp1
. . . ∂xpm−k{ ⌊m−r

2 ⌋∑
l=0

cl,m−r i
ljl

∫
Sn−1

ξir+1 . . . ξikξq1 . . . ξqm−k
Jr
mf dSξ

}]
,

where the constants cl,m−r are given in Lemma 3.5.
Finally, we use Lemma 4.3 to express the last integral in terms of the normal operator,

(m− k)! (−1)m−kN0
0 ((Rf

i1...ik)p1q1...pm−kqm−k
)

= α(p1q1) . . . α(pm−kqm−k)
(m− k)!

m!
σ(i1 . . . ik)×[

k∑
r=0

(−1)r
(
k

r

)
∂m−k+r

∂xi1 . . . ∂xir∂xp1
. . . ∂xpm−k{ ⌊m−r

2 ⌋∑
l=0

cl,m−r i
ljl
( r∑
p=0

(−1)r−p 1

p!

(
r

p

)
(jx⊙r−pδpNp

mf)ir+1...ikq1...qm−k

)}]

= α(p1q1) . . . α(pm−kqm−k)
(m− k)!

m!
σ(i1 . . . ik)×[

k∑
r=0

(−1)r
(
k

r

)
∂m−k+r

∂xi1 . . . ∂xir∂xp1
. . . ∂xpm−k

(Gm−r)q1...qm−kir+1...ik

]
.

Since α(pjqj) for 1 ≤ j ≤ m− k commutes with σ(i1 . . . ik), we take α(pjqj) inside the summation, and use

the anti-symmetry of Rk to finish the proof. □

With these preliminaries, let us prove Theorems 2.4 and 2.5.
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Proof of Theorem 2.4. Since Np
mf |U = 0 for 0 ≤ p ≤ k, the right hand side of (4.7) vanishes in U . This

implies

N0((Rf
i1...ik)p1q1...pm−kqm−k

) = 0 in U.

By the definition in (2.9), Rkf |U = 0 implies

(Rf i1...ik)p1q1...pm−kqm−k
= 0 in U.

Applying unique continuation for the normal operator of the ray transform of scalar functions [6, Theorem
1.1] on (Rf i1...ik)p1q1...pm−kqm−k

, we conclude that

(Rf i1...ik)p1q1...pm−kqm−k
= 0 in Rn,

for all 1 ≤ i1, . . . , ik, p1, . . . , pm−k, q1, . . . , qm−k ≤ n. Again using (2.9), we get Rkf = 0 in Rn. Combining
Lemma 4.1 and [20, Theorem 2.17.2], we conclude the proof. □

Proof of Theorem 2.5. By [2, Lemma 4.8], we have that Jk
mf determines Jr

mf for all r < k. Hence I0mf, · · · , Ikmf
are determined on

(
U × Sn−1

)
∩ TSn−1. This then implies that we know Np

mf |U for all 0 ≤ p ≤ k. Now
using Theorem 2.4, we have the result. □

5. ucp for transverse ray transform

Proof of Theorem 2.6. We proceed by an argument similar to the one used in [20]. Let f be a compactly
supported tensor field distribution. Fix a non-zero vector η ⊥ ξ, and consider the compactly supported
distribution:

φη(x) = fi1···im(x)ηi1 · · · ηim .
The ray transform of φη is well-defined. Fix x ∈ suppf . Denote VH = V ∩Hη, where Hη is a hyperplane

with normal η and passing through x. Note that VH is an open set in Rn−1. For x ∈ VH , define φη(x) =
fi1···im(x)ηi1 · · · ηim for a fixed η. From the knowledge of the transverse ray transform T f , we have that

I0(ϕη) = 0 and ϕη = 0 in VH .

Using unique continuation for scalar functions by [6] we get ϕη = 0 in Hη. We can vary η in an open cone
C (say) and obtain ϕη = 0 for all η ∈ C. Any such cone always contains n linearly independent vectors say

η1, · · · , ηn. Then the collection of

(
m+ n− 1

m

)
symmetric tensors

A = {ηi1 ⊙ ηi2 ⊙ · · · ⊙ ηim : 1 ≤ i1, · · · im ≤ n}
are linearly independent. This can be proved directly; see also [12, Lemma 5.4]. This gives

⟨f, η⊙m⟩ = 0 for all η ∈ A,

which in turn gives f(x) = 0 for fixed x. Varying x ∈ suppf we get f ≡ 0. □
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