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ABSTRACT. Let I, denote the Euclidean ray transform acting on compactly supported symmetric m-tensor
field distributions f, and I, be its formal L? adjoint. We study a unique continuation result for the normal
operator Ny, = I I,. More precisely, we show that if Ny, vanishes to infinite order at a point z¢ and if the
Saint-Venant operator W acting on f vanishes on an open set containing zo, then f is a potential tensor field.
This generalizes two recent works of Ilmavirta and Monkkénen who proved such unique continuation results
for the ray transform of functions and vector fields/1-forms. One of the main contributions of this work is
identifying the Saint-Venant operator acting on higher order tensor fields as the right generalization of the
exterior derivative operator acting on 1-forms, which makes unique continuation results for ray transforms of
higher order tensor fields possible. In the second half of the paper, we prove analogous unique continuation
results for momentum ray and transverse ray transforms.

1. INTRODUCTION

The purpose of this paper is to prove unique continuation properties (UCP) for three Euclidean ray
transforms of symmetric m-tensor fields; the (usual) ray transform, momentum ray transform and transverse
ray transform. Roughly speaking, we show the following: Let f be a compactly supported m-tensor field
distribution and U be a non-empty open subset of R" for n > 2.

(1) If the ray transform of f vanishes w and if the Saint-Venant operator acting on f vanishes on the
same open set, then f is a potential tensor field.

(2) If certain momentum ray transforms of f vanish on a set of lines passing through U and if the
generalized Saint-Venant operator acting on f vanishes on the same open set, then f is a generalized
potential tensor field.

(3) Let n > 3. If the transverse ray transform of f vanishes on a set of lines passing through U and if f
vanishes on the same open set, then f vanishes identically.

We actually prove stronger versions of some of the the statements mentioned above; see the precise
statements of the theorems in the concluding paragraphs of Section 2.

The study of the three transforms on symmetric tensor fields is motivated by applications in several applied
fields. The investigation of ray transform of symmetric 2-tensor fields is motivated by applications in travel-
time tomography [20, 23] and that of symmetric 4-tensor fields in elasticity [20]. The study of momentum
ray transforms was introduced by Sharaftudinov [20] and a more detailed investigation of this transform was
undertaken in [1, 10, 11, 16]. Analysis of such transforms appeared recently in the solution of a Calderén-
type inverse problem for polyharmonic operators; see [2]. Transverse ray transform of symmetric tensor
fields appear in the study of polarization tomography [20, 17, 15] and X-ray diffraction strain tomography
[14, 4].

We note that the recovery of a symmetric m-tensor field f from the knowledge of its ray transform I,, f
is an over-determined problem in dimensions n > 3. However, the recovery of f given the normal operator
Npf = I Iy f, when viewed as a convolution operator; see (2.16), is a formally determined inverse problem,
where I is the formal L? adjoint. Furthermore, we study a partial data problem, that is, the recovery
of f, from the knowledge of N,,f and a component of f given in a fixed open subset of R". We prove a
unique continuation result for this as well as for two other transforms; the momentum ray and transverse
ray transforms. The motivation for a result of this kind for the ray transform comes from its connection to
the fractional Laplacian operator. The inversion formula for the recovery of a function (for instance) from

its corresponding normal operator is given by the following formula: f = C(—A)l/ 2]5 Iy f, where C' is a
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constant that depends only on dimension. Unique continuation results for the fractional operators have a
long history and go back to the works of Riesz [18] and Kotake-Narasimhan [9]. A unique continuation result
for a fractional Schrédinger equation with rough potentials was done in [19]. In the context of a Calderén-
type inverse problem involving the fractional Laplacian, a unique continuation result was employed to prove
uniqueness in [5].

Unique continuation results for the ray transform of functions, the d-plane transform and the Radon
transform were initiated in the paper [6]. Later this was extended to a unique continuation result for the
Doppler transform, which deals with the ray transform of a vector field or equivalently a 1-form in [7]. One
added difficulty in dealing with the Doppler transform or ray transform of higher order symmetric tensor
fields is that the ray transform has an infinite dimensional kernel. Therefore unique recovery of the full
symmetric tensor field from its ray transform is not possible. Going back to the paper [7], roughly speaking,
the main result of the paper reads as follows: Let f be a compactly supported vector field/1-form and suppose
df = 0 on an non-empty open set U, where df is the exterior derivative of the 1-form f, and if the Doppler
transform of f vanishes along all lines intersecting U, then df = 0 in R™. The results of our paper can be
viewed as a generalization of this work. The approach of [7] is to reduce the unique continuation result for
the Doppler transform to that of the scalar ray transform of each component of df. We follow their idea of
reducing to a unique continuation result for a scalar function for the symmetric tensor field case, however,
our approach as well as the technique of proof are different. Our main contribution is in identifying the
right analogue of the exterior derivative operator to higher order symmetric tensor fields case, which turns
out to be the Saint-Venant operator, to prove the unique continuation results for ray transform of higher
order symmetric tensor fields. We also prove unique continuation results for momentum ray transforms as
well as for transverse ray transform of symmetric tensor fields. To prove unique continuation results for the
momentum ray transform, we consider the generalized Saint-Venant operator introduced by Sharafutdinov
[20]. In fact, we define an equivalent version of the generalized Saint-Venant operator from [20] suitable for
our purposes to prove our result.

The article is organized as follows. In Section 2, we give the requisite preliminaries and give the statement
of the main results. Readers familiar with the integral geometry literature may choose to skip the parts of
the section where we fix the notation required to give the statements of the theorems. Instead, they may
go directly to the results near the end of Section 2 and refer back to the preliminary material as and when
required. Sections 3, 4 and 5 give the proofs of the unique continuation results for ray transform, momentum
ray transform and transverse ray transform, respectively.

2. PRELIMINARIES AND STATEMENTS OF THE MAIN RESULTS

To state the main results of this work, we begin by defining the operators that will be used throughout
the article. Most of these are standard in integral geometry literature and the reference is the book by
Sharafutdinov [20]. For the purpose of fixing the notation, we give them here.

2.1. Definitions of some operators. We let 77" = T™R" denote the complex vector space of R-multi-
linear functions from R" x --- x R™ — C. Let e1,--- ,e, be the standard basis for R”. Given an element
—_—

m times
uwe€T™, welet ug...;, =u(e;, - ,e;, ). These are the components of the tensor 7.

Given u € T™ and v € T*, the tensor product v ® v € T™** is defined by

(W V)(T1, Ty Tentk 1y s Tnpk) = W(X1, -+ T )U(Tont 1y Tonetk) -
By S™ = S™R", we mean the subspace of 7™ that are symmetric in all its m arguments. More precisely,
u is an element of S™ if
Uiy -onq

im = Wiy inim)

for any 7 € II,;, — the group of permutations of the set {1,---,m}.
Let o0 : T™ — S™ be the symmetrization operator defined as follows:

1
Uu(el,"‘ ’em) = % Z u(ew(lﬁ'.' ,eﬂ(m))~

’ melly,
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The symmetrized tensor product of two tensors will be denoted by ® instead of ®. That is, given u € T™
and v € TF,

1
(u © U) (1‘1, Ty Tmet1, ’xm-l‘k) = m Z u(xﬂ'(l)’ e ’mﬂ(m))v('ri‘lr(m+l) U 7mi7r(m+k))'
’ LS NP
Given indices 41, - - - , i, the operator of partial symmetrization with respect to the indices 1, . . . , i, where

p < m, of a tensor u € T™ is given by

(i1 .. lp)Uiy..i,, = l' Z Wi (1) () ipd oo
P well,
where II, denotes the group of permutations of the set {1,...,p}.

We next define symmetric tensor fields. If A C D'(R"), the space of A-valued symmetric tensor field
distributions of R™ is defined by A(R";S™) = A®c S™. Denote by C*°(R"; ™), S(R™; S™), C*(R"™; S™),
D'(R™;S™), S'(R™; S™) and &'(R™; S™) the space of symmetric m-tensor fields in R™ whose components
are smooth, Schwartz class, smooth and compactly supported functions, tensor field, tempered tensor field,
and compactly supported tensor field distributions, respectively. An analogous definition is valid when S™
above is replaced by T™.

The family of oriented lines in R™ is parameterized by

TS" ' = {(z,6) e R" x §"7 " : (,€) = 0},
where (-, ) denotes the standard dot product in R".
The alternation operator a with respect to two indices i1, 4o is defined by
1

(i1 i2)Wiyingy..j, = Q(Umzjy..j,@ = Wigirjr...dp)-

For u € S*, we denote by i, : S™ — S™T* the operator of symmetric multiplication by u and by
Ju : S™FTF 5 8™ the operator dual to i,. These are given by

(G ir iy = 01+« Itk )Wy i figsrinsm (2.1)

(Ju9)ir..iny = gil‘..imﬁUim““'i’”*k- (2.2)

For the case in which u is the Euclidean metric tensor, we denote i,, and j, by i and j respectively. In (2.2)

and henceforth, we use the Einstein summation convention, that when the indices are repeated, summation
in each of the repeating index varying from 1 up to the dimension n is assumed.

Next we define two important first order differential operators. The operator of inner differentiation or
symmetrized derivative is denoted as d : C>(R™; ™) — C*°(R™; S"™*1) given by

S Ofiy. im
(df)i1-<-i1n+1 = 0’(7'1 e Zm"l‘l)al_i'

Tm+41
The divergence operator § : C*°(R"; S™) — C*(R™; S™~!) is defined by

Ofis.im
(5f)il--~im—1 = 8;7“”

The operators d and —§ are formally dual to each other with respect to L? inner product.

<U,’U> = /Uil...imﬁilvuim dx.

Note that the above definitions make sense for compactly supported tensor field distributions as well.

We now recall the solenoidal-potential decomposition of compactly supported symmetric tensor field
distributions [20]. Let n > 2. For f € &' (R";S™), there exist uniquely determined fields *f € S'(R";S™)
and v € S’(R"™; S™~!) tending to 0 at oo and satisfying

f=f+dv, &Ff=0.

The fields °f and dv are called the solenoidal and potential components of f, respectively. The fields °f and
v are smooth outside supp f and satisfy the estimates

f (@) < COA+ [2)' ™ Jo(@)] < O+ [a])*7", |dv(z)| < C(L+ |2)' .
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Finally, we define the Saint-Venant operator W and the generalized Saint-Venant operator W* for 0 <
kE<m.

The Saint-Venant operator W : C*®°(R"; S™) — C*°(R"; S ® S™) is the differential operator of order m
defined by

m
0 fi14..im—pj1"'jp (2 4)
, .
axjp+1 e 6'1:.77% axiwn*?‘*’l’ T 6$7,m

(W )irecimsinci = 01 i) G ) éf‘”p ()

where S™ ® S™ denotes the set of tensors symmetric with respect to the group of first and last m indices.
For our purposes, we will be using an equivalent formulation of the Saint-Venant operator using the
operator R : C*°(R"; S™) — C°°(R"; T?™) defined as follows: For f € C*°(R"; S™),

amfi1~~im

(B )irjroimim = lingi) ... a(imjm)m~ (2.5)
The tensor field R is skew-symmetric with respect to each pair of indices (i1, 71), . - - (im, jm), and symmetric
with respect to these pairs. The operators R and W are equivalent. More precisely,
Wi evimiregm = 270 (i1 ) (G- i) (B )ivjiimm (2.6)
1 . .
(Rf)ivjrimim = ma(llh) o @i )W )iy it oo - (2.7)

We remark that in [20], these formulas have two minor typos; the factor 2 is missing in (2.6) and the
constant in (2.7) is incorrectly written as (m + 1) on the right hand side.

We also need the following generalization [20] of the Saint-Venant operator.

For m > 0 and 0 < k < m, the generalized Saint-Venant operator W* : C°°(R"; §™) — C>=(R"; ™ *
S™) is defined as

(ka)pl...pm_kql...qm_kil...ik :U(P 7--~7pm7k)U(Q1»---ankal Zk) (28)
—k —k fpiy..
N (_1)l m—k o f;i-n;ﬁn—k—l(hn-m
pre l OxPm—k—1+1 | QpPm—-kJpli+1 | Jpdm—k’
where we adopt the notation from [16] and by ;1::;’;%7 we mean a tensor field of order m — k with the

indices on the top fixed (iy ... here). Note that for k = 0, (2.8) agrees with (2.4), and for k =m, W™ =1
— the identity operator.
Next we define a generalization of the operator R as follows. For f € C*°(R"; S™),

—k gi1...1
(R*f) i = (P1q1) -+ a(Pm—kgq k)—am s
P1gq1---Pm—kqdm—k?1.--lk R m—Kim— aqu o 81’qu,€ (2'9)

= R(fil.“ik)p1q1~-~pm—ka—k'

As with the equivalence of W and R, we show the equivalence of W* and R* in Section 4.
Finally, note that the operators W, R, W* and R* are well-defined for tensor field distributions as well.

2.2. Ray, momentum and transverse ray transforms. We now define the ray transform, momentum
and transverse ray transforms whose unique continuation properties we study in this paper. We initially
define these transforms on the space of smooth compactly supported symmetric tensor fields. These will be
extended to compactly supported tensor field distributions later.

The ray transform I is the bounded linear operator

Iy : C°(R™; 8™) — C(TS™ 1)
defined as follows:

Lo f(2.€) = / Fivt (& + E)ET - €im dt = / (e + €),€m) dt (2.10)
R

R
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This can be naturally extended to points (z,£) € R™ x R™ \ {0} using the same definition. We will denote
the extended operator by J, : Co°(R™; S™) — C°(R" x R™\ {0}):

I f(2,8) = /fil‘..im(x + tg)gil E'Lm de.

In fact, the operators I,, and J,, are equivalent. Restricting J,, f to points on TS"~! determines I, f. For
the other way, we use the following homogeneity properties:

In(er€) = T2 URN@ for 720
Jm(x + Sf,f) = Jm(l‘,f).

From this we have
(.68 &
€127 1]

T f(2,8) =[] T f (x - ) for (x,€) € R® x R™\ {0}.
oD O

The main reason for working with J,, instead of I,,, is that the partial derivatives 3 O€
T i

well-defined for all 1 <7 <n.
The momentum ray transforms are the bounded linear operators, I¥ : C®(R";S™) — C®(TS" 1),
defined for each k£ > 0 as

are

(Inf)(,6) = / t fiyoeiy (@ E)E - it (2.11)
The operator I2, is of course the ray transform I defined above.

Similar to the case of ray transform, the momentum ray transforms can be extended for points (z,&) €
R™ x R™\ {0}. The extended operators will be denoted by

JE L CR(R™; 8™) — C°(R™ x R™"\{0}) (2.12)
using the same definition. The operators J% satisfy the following [10]:

,rmfk

(I )@, r€) = (I f)(@,&) for 7#0 (2.13)

7]

k
UD€ =3 ()-8 for seR (2.14)
=0

The data (IS, f,I% £, ..., I% ) and (JO, f, JL f, ..., JE f) for 0 < k < m are equivalent ([10, Equations 2.5,
2.6]). As with the case of the ray transform, it is convenient to work with the operators an because the
k k
OULD) O
ot o0&t

For f € C°(R™; S™), we define the transverse ray transform. Let
TS" o TS ' ={(w,z,y) €S ' XxR"xR":w-2=0,w-y =0}

be the Whitney sum.
The transverse ray transform 7 : C2°(R™; ™) — C°(TS" '@ TS" ') is the bounded linear map defined
by

partial derivatives

are well-defined for all 1 < ¢ <n.

Tf(w,%y):/fn--.im(fﬂrtw)y“ Syt dt. (2.15)
R

2.3. Normal operators. Next we extend the definitions of the ray transforms to compactly supported
tensor field distributions. We also define the corresponding normal operators.

For the case of ray transform (2.10), the definition can be extended to compactly supported tensor field
distributions as done in [20]:

For f € £&'(R"; S™), we define I,,,f € £'(TS™!) as

(I f, @) = (f, L) for ¢ € C®(TS" ),
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where

I o p(z) = / € o ol — (2, ). €) dSe.
gn—1

Here and henceforth, dS¢ is the Euclidean surface measure on the unit sphere.
Similarly, if we work with .J,,,, we can define J,, f for f € £ (R"; S™) using the following formal L? adjoint:

(T (@) = / / €y € ol — tE,£)dEdSe for ¢ € CX(R™ x §"1),
sn-1 R

The normal operator N,,f = I, I, f has the following integral representation [20].

®2m
11 tm JiJm ||x||2m+n—1

This representation makes sense for f € £ (R"; S™) as the convolution of a compactly supported distribution
and a tempered distribution.

Next we define momentum ray transform of compactly supported tensor distributions. This was studied
recently in the context of an inverse problem for polyharmonic operators in [2]. We work in a slightly different
context here and for this reason, we give the details.

Let us first derive a representation for the formal L? adjoint (If;)* of I* . Consider for f € C2°(R") and
geC™(Ts"

(IF fogyrsn— = (f, (I})*

//Ik (2,€) g(z, &) do dSe

§n—tgt
—//71&’“<f(x+t£),£m>dt9(x,€)d$dss

Sn—1gl —oco

— [ [eotue.em o oo e,

§n—1Rn

where we employed the change of variables z 4+ t& = z for z € ¢+ and ¢t € R for each fixed £ € S*~!. Now
interchanging the order of integration

(I8 ghan = / Fovi (2) / (2 )56, i gz — (2, 6)6,6) dE b d.
RTL

n—1

Thus the formal L*-adjoint of I¥, (Ik)* . C>°(TS"!) — C>(R"; S™) is given by the expression

(5 ) i () = / (.0 &y €0 gl — (2, )€, €) dSe. (2.17)
gnfl

Using this we can extend momentum ray transforms for compactly supported tensor field distributions as
follows. I : &'(R™; S™) — £'(T'S"™1) given by

(Inf.9) = (£, (I3.)"9) (218)
for f € &'(R™;S™) and g € C>(TS"™1).
Similarly, if we work with J% then for f € £ (R™;S™), JX f can be defined as follows:

(Ihfo9)=(f, (Jr)"g)

where

(JE): i g(x) = / / e —t6,)E" -+ ¢mdtdSe  for  ge CP(R" xS™7H).

sn—1 R
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We next study normal operators of momentum ray transforms. Let us denote N* = (IX)*I1* . C>(R"; S™) —

C*>(R™; S™) be the normal operator of the k&' momentum ray transform of a symmetric m-tensor field. By
(2.17),

(Nop Piscion () = (I35, I f (@)
— [ @oter g 1 - @98, e
g1
Note that for z € R and £ € S"7 1, (z — (x,€)¢,€) € TS L. Since I¥ and J* agree on TS" !, we have
(V8 i) = [ {0,861, 61, TS (@~ (2,6,€) e (219)
Using (2.14), we have N

k
(N Divin (@) = 3 (?) / (@, &, - &, (T f) (@, €) dSe
1=0
k 0
lz: (?) / / (z, &) e & ¢ Firoim (@ +tE)gi .. gIm dt dSe
=0 Sn—1 —oo

— 2 ( ) / / x é’ 2]@ lé'“ fzm tl f]l]m(x+tf)£]l ...é'jm dtng

= §n—1 0

Consider the change of variable x 4+ t£ = y to obtain t = |y — z|, £ = Y We have

— T
ly — x|

(N'r]:zf)’uzm (J?)

NG Y~ T \2k—1 y—az \*" ly — x|
= - o LAl B |
2¥<Z>/<x () ), gt

i1edimJ1eeJm

Note that for z,z € R”, we can write (z, 2)" = j,or2®". Then we can write

k _ ®2m+2k—1 Sirein (W)
(N f 1. Zm - 22( )/ Ja:@%*l(y_x) " )il"'imjl"'jm |y—x|2m+2k*2l+”*1 dy

R

This gives
O2m—+2k—1
(Nkf _ QZ l 2 O2k—1 fi ok (Z‘ )Pl"'P2k—li1“'imj1~~jm (2.20)
11 zm Lpi-opar—y |Jd1dm ‘x|2m+2k—2l+n—1 : ’

Equation (2.20) makes sense for f € £'(R™; S™) as well. For f € £'(R™; S™), NF : &'(R"; S™) — D'(R"; S™)
can be viewed as a multiplication of a smooth function with the convolution of a compactly-supported
distribution and a tempered distribution.

We will use in our calculations the divergence of the normal operator of momentum ray transforms given
by

(5Nr]zf)i1u.im71 (JU) =k / <$a §>k71 §i1 s gim—l ka(I - <SL', §>€7 E) de (221)
S§n—1
This can be obtained by directly applying the divergence operator to (2.19). Iterating, we get the formula

|
ENE @) = Gy [ @057 i, TS (2,6€) a5
S§n—1
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k

—m () [ o T ase

§n—1

=0

In particular,
k

N D) =13 () [ 00 6 i T a5 (2.22)

=0

and
SFHINE F =0, (2.23)

To conclude this section, we remark that our approach for proving a unique continuation principle for
the transverse ray transform on symmetric tensor fields is based on the analysis for the ray transform of
scalar functions/distributions, and since we already know to handle this case, we do not define transverse
ray transform of symmetric tensor field distributions separately.

We are now ready to state the main results of the article.

We say a function ¢ vanishes to infinite order at a point xg € R™ if ¢ is smooth in a neighborhood of zq
and v along with its partial derivatives of all orders vanishes at g, that is, 95t (z¢) = 0 for all multi-indices
a.

Theorem 2.1 (UCP for ray transform I). Let U C R" be any non empty open set and n > 2. Let
f e &R 8™) be such that Rf|y = 0 and N,,f vanishes to infinite order at some o € U. Then f is a
potential field, that is, there exists a v € E'(R™; S™ 1) such that f = dv.

Theorem 2.2 (UCP for ray transform II). Let U C R"™ be any non empty open set and n > 2. Let
f e & (R™S™) be such that Rf =0 and N,,,f =0 in U. Then f is a potential field.

Corollary 2.3 (UCP for ray transform III). Let U C R"™ be open. Let f € E'(R™; S™) be such that Rf|y =0
and the ray transform of f vanishes on all lines passing through U, that is, Jo, f(2,€) =0 forz € U, £ € S"7 L.
Then f is a potential field.

Theorem 2.4 (UCP for momentum ray transform I). Let U C R™. Let f € &'(R";S™) be such that for
some 0 < k <m, ka|U =0. If NP flu =0 for all0 < p < k, then f is a generalized potential field, that is,
there exists a v € £ (R™; S™ %=1 such that f = d*Tw.

Theorem 2.5 (UCP for momentum ray transform I1). Let U C R" and f € £'(R"™;S™). Suppose for some
0<k<m, Rifly =0 and JE f(x,&) = 0 for all (x,&) € U x S"™*, then f is a generalized potential tensor
field.

In all the results above the support of v is contained in the convex hull of the support of f.

Theorem 2.6 (UCP for transverse ray transform). Let n > 3 and f € &' (R";S™). Assume that Tf =0
along all the lines intersecting a non-empty open set U and f =0 i U. Then f =0.

3. UCP FOR THE RAY TRANSFORM

In this section, we prove unique continuation properties for the ray transforms. We prove Theorem 2.1.
We first show that Ny, f is smooth in U if Rf|y = 0.

Lemma 3.1. Let f € E&'(R™;S™) be such that Rfly = 0 for some open set U C R™. Then, N,,flu is
smooth.

Proof. We use the following formula proved in [3, Theorem 2.5] for f € S(R™; S™):

A™(f) =270 Rf, (3.1)
where . is the even indices divergence operator [3, (2.4)] and °f is the solenoidal component of f. In (3.1),
the formula is interpreted componentwise. The same proof works for f € £'(R™; S™) as well. By hypothesis,
the right hand side of (3.1) is 0 in U, and hence A™ (°f) = 0. By Weyl’s Lemma [21], °f is smooth in U,
and hence so is N,,, °f. Since N,,,f = N, f; see [20], we are done. O

Now we will only prove Theorem 2.1. Theorem 2.2 is a trivial consequence. The idea of proof is to reduce
the problem to that of the functions case as in [7]. The following proposition serves as the key ingredient.
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Proposition 3.2. For f € £'(R";S™), the following equality holds:
L’VTLJ
m! No(RSf)irju.imim Z lan (R N f))ir g1 i (3.2)

where || denotes the greatest integer function < x and the constants ¢; n,, are given by

m—Il—1 ] lm!
Cz,m_{ H (n1+2p)}21;!(772_2l)!~

p=0

Remark 3.3. An inversion formula recovering the Saint-Venant operator of f from its ray transform is
proved in [20, Theorem 2.12.3]. From (3.2), one can derive this inversion formula. However, our approach
here is different and in our opinion simpler than that of [20, Theorem 2.12.3].

To prove this proposition we first prove a technical result, see Lemma 3.5, which will be used in the next
two sections. We first recall the definition of a positive homogeneous function.
A function g is called positive homogeneous of degree A if

g(rz) =r'g(x)

for all x € R", and r > 0.
The following lemma was recently used in [13] as well.

Lemma 3.4. If g is smooth and positive homogeneous of degree A such that n+ A > 0, then
[ s©ase=m+n [ s
sn—t lgl<1

Proof. Using polar coordinates, we have
1

[ o@ac= [ [ grerrascar

l€1<1 0 sn-t
1
:/ / P TATlg(€)dSe dr
0 sn-1
1
Ry oy

S§n—1
g

Lemma 3.5. Let n > 2 and g be a smooth function on R™ such that g is positive homogeneous of degree
s —1 for some s € N. Then the following equality holds:

/agll... g 1% = chs/” (€9%),,...0. 9(6)dSe, (3.3)

Snfl
with the constants c¢; s given by
(s—1-1) 1
B (—=1)"s!

w=0

Proof. The proof proceeds by induction on s. We first prove (3.3) for s = 1.
For a smooth function g positive homogeneous of degree 0, we have from Lemma 3.4,

/ 6“’ ase=w-1) [ 7 S de.

1€1<1
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g is positive homogeneous of degree —1. Now applying the divergence theorem, we get,

since 7€,
| aede= [ cose.
l€1<1 §n-t
Hence
| sease=m- [ eo@ase (35)
sn—1 §n—1

For s =1, the only choice for [ is 0 and ¢p,; =n — 1 in (3.4). Thus for s =1 (3.3) agrees with (3.5).

Now assume that (3.3) is true for some s = r — 1. We want to show that the equality (3.3) holds for s = r.

0
g is positive homogeneous of degree » — 2 and

08,

Let g be a positive homogeneous of degree » — 1. Then

by induction hypothesis we obtain

oq L=5t ) 9
77 4 _ E . ) @T—l d
Sn[1 85“ . 66“ Sg —o Clr—1 n[; v (é- 7,1 et afz S§

Note that i'j! (£ 1) 8a§i

and using Gauss divergence theorem, we get

LT;l
a" o . T_
[ e as= Y cl,r1<n+2r—zz—3>[— [ (et €, ) a0 G0
Snfl

1=0 le[<1

is a positive homogeneous function of degree 2r — 2] — 3. Applying Lemma 3.4

+ / ’iljl (§®T_1)il..~ir_1 gi,« g(ﬁ) ng‘| .
gn—1

We now use Lemma 3.4 in the first integral in (3.6) and obtain
o L5+)
/ aidsg = Z clr—1(n+2r—20—3) / it (), L &g(€)dSe
Eiy - 0&;, trtir—1

gn—1 =0 gn—1

7‘ lj
- Z o [ (G €, 0, )o@

S§n—1

-1
We separate the [ = 0 term from the first sum, and | = \_TTJ term from the second sum in (3.7) to get

87‘
/ ﬁ dS¢ = cor1(n+2r — 3)5/1 &, ... &, g(€)dSe

Sn—1
L=2*)
Al (eOTr—1 .
#3 epmlrar-2-3) [, L 6 (@) dse

=1 .
51 ’ (3.8)
2 - a o .
- Y e / <ag- i'5 (€° 1)i1,,,l.rl>g(g) ds(€)
=0 Snfl r
a Jr=1 ,r=1 r—
el / <8€¢,,, AL (0 1)) #(6) ..
Sn—l

We analyze the integrals in (3.8) separately.
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Since ¢or—1(n + 2r — 3) = ¢o,, we have

CQ7T,1(TL + 2r — 3) / 61‘1 e Elr g(f) dSE = Co,r / 61‘1 e flr g(f) dSE (39)

Sn—1 Sn—1

Next we analyze the last term in (3.8). First we consider the case of odd r. Letting r = 2k + 1, we have

-1
LT 5 | = k. Then we have

ikjk (fQQk)

Hence for r odd, the last term in (3.8) is 0.

i1-iak = U(il T iQk) (5i1i2 T 6i2k—1i2k) .

-1
Next we consider the case when r is even. Letting » = 2k, we have Lr 5 |=k-1= Lg] — 1. This
implies
r—k—1
_ (=D*t(r—1)!
Cgem = 11 (=1 20) 5
w=0
r—k—1
(=D)kr! |
=- HO (n—1 +2w)W using r = 2k,
= —Ckyr = —ClE],r
We have

O (1. _ o . .
@ (Zk 1jk ! (£®2k 1)i1-~~i2k_1> = (C)EZT 0(7“1 e ZQk—l) (6i1i2 T 6i2k—3i2k—2512k—1)

= J(il o iQk—l) (61'11'2 t 5i2k—3i2k—2512k—1i2k) .

We observe, recalling that r = 2k,

o(ir - ir—1){0iiy iy _yi, ) = 0(in i ){Oiyiy = Oipyin )

Therefore,

8 3 - ) - - . .
@ (Zk Ljk—1 (€®2k 1)“‘“2_%71) — ik jk (g(azk)

il"'i2k °

Summarizing, we have,

0 =1 r—1 ,
e / 5 (lt #1415 (o )) 9(€)dSe

gn—1
0 if r is odd (3.10)
BAGEE / ilzl 5] (€°7),,... 9(€)dSe i r is even.
gnfl

We now consider the remaining terms in (3.7):

7‘;1

S cpa(n b 2r 20— 3) / i), L 6 9(€)dSe
=1 -

=52 )-1

= % s [ (G ) 9O =T (o)

=0 §n—1
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Re-indexing the second integral above we obtain

L5
I = Z clr_1(n+2r—20—3) / ity (§®T—1)ilmm &, 9(€)dSe
1=1 n
s (3.11)
5] 9
- Z Cl—1,r—1 / <ail_1jl_1 (§®T_1)i i )9(5) dSe.
Ei, prie—1
1=1 g1
r—21 21 .. .
Note that ¢; ,—1(n+2r — 21 = 3) = cr and —¢_1 -1 = mcl,r. Combining this with
(3.11) we get
== o
_ 5T -] -l oOr—1 .
I - Z r {(T - QZ) / 1) (g )il"'ir—l 57.7‘ g(g) de
=1 §n—1
2l O 111 feor—1
_— =Y. dSe¢ 7.
+ r—2l + 1 / ((’)@7, ! J (f )’Ll"'lrr-—l g(ﬁ) €
S§n—1
—1
Finally, we observe the following: for 0 <1 < Lr 1,
1O r—2l g _
[ e, a@ e =22 [iger), e aease (3.12)
Sn—l Sn—l
2l O (1-1.-1 (por—1
L P dSe¢.
EE Ty / 5%, (z VA3 )“...“_1> 9(€) dS¢

Snfl
This can be seen by expanding the left hand side expression,
) (567‘)1‘1”.” = U(Zl e ZT) (6i1i2 e 512l—1¢2l£¢2l+1 e &r) .

The first term comes from those permutations that takes i, to one of ig;41 - - - 4, and the second term comes
from the complement.

Finally, substituting (3.9), (3.10) and (3.12) into (3.8) we get (3.3) for s = r. This completes the proof. [

Proof of Proposition 3.2. We prove (3.2) for f € C°(R"; S™) first.
By an iteration of [20, Equation 2.10.2]

(=2)"m! IO((Rf)iljl“'imjm) =Jiji Jivim (S f), (3.13)
where the ray transform acts on the scalar function (Rf);,j,...i,,5,, on the left hand side and for each
1 <4,j < n the John operator [8] J;; is defined, for functions ¢ € C*°(R™ x R"\{0}), by

Po Py
8:5,85] 695]051- '

Toe(e,€) = ( (3.14)

Integrating both sides of (3.13) over S*!,

. o om 0" I f(x,€)
_ 9\ M| Yy _9m
(=2)™MINo((RS)irjr.imim) = 2" (i171) - - - (i m) IR T / 6, 05, dSe.

Sn—

Using Lemma 3.5,
(=2)"m!No((Rf)irjy...imjm)

= 2 a(i1j1) . Olimim) 5—

S§n—1
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1]
__ om -l -l
=2 ambB (i Noo )i i
1=0
Now using anti-symmetry of R on the right hand side, we get (3.2). The proof for f € C°(R";S™) is

complete. The proof for f € &'(R™; S™) follows by integral representation for the normal operator N,,; see
(2.16), the density of C2°(R™;S™) in £&'(R™; S™) combined with the fact that convolution:

(u,v) > uxv from &(R") x D'(R") — D'(R™),

is a separately continuous bilinear map. See [22, Theorem 27.6].
O

With the preliminary results in place, we prove the unique continuation results for the ray transform of
symmetric tensor fields below.

Proof of Theorem 2.1. By Lemma 3.1, the hypothesis Rf|y = 0 implies that the normal operator N,, f is
smooth in U. Also, Ny, f vanishes to infinite order at zo € U. Thus, by (3.2), No(Rf)i, . .ip.j,. 1S smooth
in U and vanishes to infinite order at o € U. Using [6, Theorem 1.1], we conclude that (Rf):,j,...jmjm = 0.
Since this is true for all indices 41, J1, - - - tm, jm, Rf vanishes identically on R", which is equivalent to W f
vanishing on R™. Thus by [20, Theorem 2.5.1], there exists a field v € £ (R";S™ 1) whose support is
contained in the convex hull of support of f and f = dw. O

The proof of Theorem 2.2 follows as a direct consequence of Theorem 2.1.

Proof of Corollary 2.5. Since J,, f(x,€) = 0 for x € U and ¢ € S"™!, using homogeneity properties, we know
I f (= (x,8)&, &) and hence we have that N, f(x) =0 for all z € U. This in particular implies that N, f
is smooth in U and, trivially, vanishes to infinite order at any point o € U. The conclusion follows from
Theorem 2.1. O

We also present a much simpler proof working directly with the ray transform.

Alternate proof of Corollary 2.3. Since I, f(x,£) = 0 for all ¢ € S"~! and = € U, the left hand side of (3.13)
vanishes, and hence so does the right hand side. Since f € &' (R™;5™), (Rf)i1j1...imjm € €' (R™) and thus by
[6, Theorem 1.2], Rf vanishes identically on R". The proof now follows from [20, Theorem 2.5.1]. |

4. UCP FOR MOMENTUM RAY TRANSFORMS

In this section we study unique continuation for momentum ray transforms. We prove an analogue of
the identity proved for ray transforms (Proposition 3.2), for momentum ray transforms in Proposition 4.4
below. We first show the equivalence of R¥ and W* and then we prove a lemma required in the proof of
Proposition 3.2.

Lemma 4.1. Let f € D'(R";8™) and U C R™ be open. Then for 0 < k < m, W¥f|y = 0 if and only if
ka|U = 0. In fact, the following equalities hold

(ka)pl...pm,kql...qm,kil...ik = 2m7k0_(q1 e Qm—kil e Zk)g(pl .. pm—k) (41)
(ka)plih---Pm—k‘]m—kil---ik
1 m
k
(R f)punu-pm_kqm_kilu.ik = m—k+1 (k>04(P1Q1) o 0(Pm—kGm—t) (4.2)

(ka)pl-~~pm7kQ1--<quki1-~ik'
Proof. We present the proof using similar ideas from [20, Lemma 2.4.2]. From [16, Equation 27] we obtain
(ka)pl--<pm7kq1---q”szil---ik = U(ql e qm_kil e Zk)(Wf’Lllk )pl--<pm7kq1---quk'

Using (2.6) for an m — k-tensor field f"* we get (4.1).
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Now, we prove (4.2). Decomposing the symmetrizations o(py ...pm—x) and o(q1 - .. Gm—kt1 ... 1) in the

definition of W* with respect to the indices p,_j and ¢m_k and taking into account the symmetries of f
and mixed partial derivatives, we get

m—k
(W* F)pr o pn st tm—sin i = OP1 P k1) (@1 -+ G irin k) Y (=1)] <m l_ k> 7m(m1— A
1=0
— k- l)2 8m7k ;;i:.-;km—k—l—lpyn—kql---‘Il
x |m 0Tp, ooy OFp, _y 02g,, .. 0ng,
2 ok ;i:::gc'm—k—lql~~~ql—1Qm—k
i 0T, yypr -0y, Oq ... 0Tq, + h] ’

where h is some tensor symmetric in py,—k, gm—k. Applying the operator a(pm,—k gm—r) to this equality and
noting that it commutes with o(p1 ... pm—r—1) and o(q1 ... ¢m—k—11 ...4x), we obtain

OZ(Pm—k mek)(ka)pl...pm,kql...qm,kil...ik = O‘(pmfk quk)o—(pl .. ~pm7k71)0—(q1 e mekflil e Zk)

S (" N

=0
m—k i14..ik
X {(m _ k _ Z)2 P1---Pm—k—1—1Pm—kq1---q1
Oxp, ... 0Ty, OTq, ...0%q,
8m—k 111k
_ 12 P1---Pm—k—1Pm—kq1---q1—1
)
axanfkfli»l e axp'mfk'flaqu e 81:(177sz

where we interchanged p,,_x and ¢,,— in the last term, contributing to the negative sign.
Combining the first summand in the brackets of the [-th term of the sum with the second summand of
the (I 4 1)-th term, we get

k
O‘(pm—k Qm—k)(W f)pl...pm,kql...qm,kil...ik
- m—k+1
a m
m—k—1 8m—]€ B1... 0k

27 (71)1 (m _lk - 1> D1 Pm—k—i—1Pm— 41 - 4l

=0 O, gy Oy, Oqy . 0T,

m—k+1 0

= Ta(pmkamfkr) Oz

A(Pm—k Gm-1k)0 (D1 Pm—k—1)0(q1 - - - Gr—to—1t1 - . . Uk)

(kap7n7k)p

1o Pm—k—1q1-Qm—k—1%1.--k >
Am—k

where on the right hand side W* acts on the (m — 1)-tensor field obtained by fixing the index p,,—x in f.
Iterating this (m — k)-times, we get

(m—k+1)

(%)

a(p1a1) - - Pk Gm—1) W F)pr o po oo it i = a(prqr) - - - (Pm—kGm—r) (4.3)
0xq, ... 0xq,,

Finally, note that on the right hand side, W* acts on the k-tensor obtained by fixing (m — k)-indices. Since
by our convention, W¥ acting on k-tensors is just the identity operator, (4.2) follows. O

Remark 4.2. From the expression for R* in (2.9), it is clear that given R* for some 0 < k < m, we can
recover R® for all 0 < s < k. Since Wk and RF are equivalent, we can recover W?* for 0 < s < k as well.

Lemma 4.3. Let f € C°(R";S™). Form >0 and 0 < k <m,

7!
r=0

k
[ & BN a8 = S0 L () Gror 0N (1.4
STL—l

where the operator j is given in (2.2) and ¢ is given in (2.3).
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Proof. We prove this result by induction on k. For k = 0, (4.4) is just the definition of the normal operator
of the ray transform of a symmetric m-tensor field f given in (2.19).
Now assume that (4.4) is true for all 0,1,...,k — 1 and we want to prove this for k. By (2.22), we have,

/ v (A€ dS¢ = 2 (PN )iy (2)

- Z ( ) / € 76, Gin (T (@, €) dSe.
Since (z,£)" = j,0-£°", we have, together with the induction hypothesis,

/ € o (T5 ) (.€) dSe
Sn—l
k—

1
kl(&’w’f Fivein ()jm@kz / Eiy - & EOPTUTL F)(, €)dSe

=

S T kz_‘j (’f) S (1) = (l> Goor NI

=0 r=0
Interchanging the order of summation in the second term,

r= 0 l=r r
We note that

k
kN (1
Z(—l)”( >( > =0. (4.6)
— l)\r
This is obtained by differentiating the binomial expansion of (14 x)*, r number of times and letting z = —1.
k—1
k l k
From (4.6), we have Z (l) (—1)l_T< ) = (—1)]“_““1( ) Combining this with (4.5) we get
T r
l=r
- 1 (k
/ 6+ BN 0 = (02 (1) Gon 0N )
e d
This cornpletes the proof. O

Proposition 4.4. For f € £'(R";S™),

m! NO((Rfil'“ik )P1a1. PG

o [k or
= otirei) S0 (1) g G Do s

where Gp—, 18 a symmetric (m — r)-tensor given as

L”VL 'V'J
1
(Gm*T)ir+1--.ikf11-..f1m4@ Z Clym— rlj (Z( )" p'( )(Jx@r »OP Ny, f)ir+1~»-ikq1»--qu>'

p=0

Proof. As in the proof of Proposition 3.2, we prove the identity for f € C2°(R"™; S™).

We begin with the following relation which can be shown in exactly the same way as in (3.13) by considering
the ray transform of the m — k symmetric tensor field obtained by fixing the indices 41, -- ,i; and then
applying the John operator m — k times

(m - k)'(_2)m7k10((Rf112k )p1q1~--p7n—kafk) = JI)1Q1 e mefk(bnfk'lm_k (flllk) . (4'8)
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Substituting the expression for J°,_, f-%* from [16, Lemma 4.2] we get

(_Q)m_k(m —k)! Jg((Rfilmik )Pl‘]l---pm—ka—k)

& 62m72k
=2"" Oé(plﬂh) s O‘(pm—kQ’m—k)ax o af 85
p1--c Pm—k q1 dm—k
m—k)! i ok Jr f
AT Z m
m! —0 833“ e 8xiT8§iT+1 e 8§Zk

Integrating both sides over S*~!, we get
(71)mik(m - k)' ]\[(]((R‘fll“C )quln-prn—k(Imfk)

=a(piq1) ... a(pm—ka—k)%O'(il k)

k
. k amkarr
Z(_l) (r) 0x;, ...0x;, 0xp, ...0xp,

r=0

amfrJ;;Lf }
dSe ¢ |-
{ / Oy - 06,06, .. 0, ° 1

Sn—

Since J;, f is a homogeneous function of degree m —r — 1 in the £ variable, using Lemma 3.5, we have

(_1)m—k(m - k)' N(())((Rfilmik)Pllepm—ka—k)

m—Kk) . .
=« p1Q1 (pm kqm— k)%a(ll - zk)x
am—k-{-r
83:“ 0%, 0p, ... 0Tp,

Lm T

{ > anriit [ &m...@ksql...fqmkJ:nfdsg}],
=0

Sn—l

where the constants ¢; ,—, are given in Lemma 3.5.
Finally, we use Lemma 4.3 to express the last integral in terms of the normal operator,

(m - k)' (_1)m_kN8((Rfiln.ik)Plthmpmfkquk)

m—£k) . )
=a(piq1) - - (Pm—kGm— k)T)O'(h...Zk)X
am—k—i—r
&T“ .0z, 0xp, ... 0Tp,

Lm r
{ Z Clm TZJ Z( 1) p;, <T>(]$@T P(spN f)lr+1-~»ikQ1~»-ka)}]
p=0

=a(p1q1) - - a(pm—ka—k)¥

k
, k 8m—k+r
[Z(—l) (r) 0wy, ... Ox;, Dy, ... Dy, (Gm”)q““q’”“’““""“] '

=0

a(il...ik)x

Since a(pjg;) for 1 < j < m — k commutes with o(i; ...17), we take a(p;g;) inside the summation, and use
the anti-symmetry of R* to finish the proof. ]

With these preliminaries, let us prove Theorems 2.4 and 2.5.
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Proof of Theorem 2.4. Since NP fly = 0 for 0 < p < k, the right hand side of (4.7) vanishes in U. This
implies

NO((RJM'L““)p1q1...pm_kqm_k) -0 in U
By the definition in (2.9), R*f|; = 0 implies
(Rfilmik)plth...pmfkquk =0 in U

Applying unique continuation for the normal operator of the ray transform of scalar functions [6, Theorem
L1) on (Rf™ ") piar...pm_ram_r, We conclude that

(R "™ )prgr.pm ram- =0 in R,

for all 1 < iy, ... ik D1s- s Pmks Qls s Gm—t < n. Again using (2.9), we get R*f = 0 in R". Combining
Lemma 4.1 and [20, Theorem 2.17.2], we conclude the proof. O

Proof of Theorem 2.5. By [2, Lemma 4.8], we have that Jf;f determines J”, f for all 7 < k. Hence IC, f, - - - ,I,lflf
are determined on (U X S"_l) NTS""!. This then implies that we know NP f|y for all 0 < p < k. Now
using Theorem 2.4, we have the result. (]

5. UCP FOR TRANSVERSE RAY TRANSFORM

Proof of Theorem 2.6. We proceed by an argument similar to the one used in [20]. Let f be a compactly
supported tensor field distribution. Fix a non-zero vector n L &, and consider the compactly supported
distribution:

On(®) = firerin (T)Niy - M-
The ray transform of ¢, is well-defined. Fix x € suppf. Denote Vg = V N H,,, where H, is a hyperplane
with normal n and passing through z. Note that Vi is an open set in R"~!. For z € Vg, define on(z) =
firein, (@), -+ -my,, for a fixed 7. From the knowledge of the transverse ray transform 7 f, we have that

I°(¢y) =0 and ¢, =0 in Vy.

Using unique continuation for scalar functions by [6] we get ¢,, = 0 in H,. We can vary 7 in an open cone
C (say) and obtain ¢, = 0 for all n € C. Any such cone always contains n linearly independent vectors say

m+n—1
M, ,Mn. Then the collection of < + > symmetric tensors
m

A={n, On, ©® - On,, 1 <y, iy <n}
are linearly independent. This can be proved directly; see also [12, Lemma 5.4]. This gives
(f,n°™y =0 forall ne€ A,
which in turn gives f(z) = 0 for fixed z. Varying x € suppf we get f = 0. (]

REFERENCES

[1] Anuj Abhishek and Rohit Kumar Mishra. Support theorems and an injectivity result for integral moments of a symmetric
m-tensor field. J. Fourier Anal. Appl., 25(4):1487-1512, 2019.

[2] Sombuddha Bhattacharyya, Venkateswaran P. Krishnan, and Suman Kumar Sahoo. Unique determination of anisotropic
perturbations of a polyharmonic operator from partial boundary data, 2021.

[3] Alexander Denisjuk. Inversion of the x-ray transform for 3D symmetric tensor fields with sources on a curve. Inverse
Problems, 22(2):399-411, 2006.

[4] Naeem M. Desai and William R. B. Lionheart. An explicit reconstruction algorithm for the transverse ray transform of a
second rank tensor field from three axis data. Inverse Problems, 32(11):115009, 19, 2016.

[5] Tuhin Ghosh, Mikko Salo, and Gunther Uhlmann. The Calderén problem for the fractional Schrédinger equation. Anal.
PDE, 13(2):455-475, 2020.

[6] Joonas Ilmavirta and Keijo Ménkkonen. Unique continuation of the normal operator of the x-ray transform and applications
in geophysics. Inverse Problems, 36(4):045014, 23, 2020.

[7] Joonas Ilmavirta and Keijo Monkkoénen. X-ray tomography of one-forms with partial data. SIAM J. Math. Anal.,
53(3):3002-3015, 2021.

[8] Fritz John. The ultrahyperbolic differential equation with four independent variables. Duke Math. J., 4(2):300-322, 1938.

[9] Takeshi Kotake and Mudumbai S. Narasimhan. Regularity theorems for fractional powers of a linear elliptic operator. Bull.
Soc. Math. France, 90:449-471, 1962.



18 D. AGRAWAL, V. P. KRISHNAN AND S. K. SAHOO

[10] Venkateswaran P. Krishnan, Ramesh Manna, Suman Kumar Sahoo, and Vladimir A. Sharafutdinov. Momentum ray
transforms. Inverse Probl. Imaging, 13(3):679-701, 2019.

[11] Venkateswaran P. Krishnan, Ramesh Manna, Suman Kumar Sahoo, and Vladimir A. Sharafutdinov. Momentum ray
transforms, II: range characterization in the Schwartz space. Inverse Problems, 36(4):045009, 33, 2020.

[12] Venkateswaran P. Krishnan and Rohit Kumar Mishra. Microlocal analysis of a restricted ray transform on symmetric
m-tensor fields in R™. SIAM J. Math. Anal., 50(6):6230-6254, 2018.

[13] Venkateswaran P. Krishnan and Vladimir A. Sharafutdinov. Ray transform on sobolev spaces of symmetric tensor fields,
i: Higher order reshetnyak formulas, 2021.

[14] W. R. B. Lionheart and P. J. Withers. Diffraction tomography of strain. Inverse Problems, 31(4):045005, 17, 2015.

[15] William Lionheart and Vladimir Sharafutdinov. Reconstruction algorithm for the linearized polarization tomography prob-
lem with incomplete data. In I'maging microstructures, volume 494 of Contemp. Math., pages 137-159. Amer. Math. Soc.,
Providence, RI, 2009.

[16] Rohit Kumar Mishra and Suman Kumar Sahoo. Injectivity and range description of integral moment transforms over
m-tensor fields in R™. SIAM J. Math. Anal., 53(1):253-278, 2021.

[17] Roman Novikov and Vladimir Sharafutdinov. On the problem of polarization tomography. I. Inverse Problems, 23(3):1229—
1257, 2007.

[18] Marcel Riesz. Intégrales de riemann-liouville et potentiels. Acta Sci. Math. (Szeged), 9(1-1):1-42, 1938-40.

[19] Angkana Rilland. Unique continuation for fractional Schrodinger equations with rough potentials. Comm. Partial Differ-
ential Equations, 40(1):77-114, 2015.

[20] V. A. Sharafutdinov. Integral geometry of tensor fields. Inverse and Ill-posed Problems Series. VSP, Utrecht, 1994.

[21] Daniel W. Stroock. Wey!l’s lemma, one of many. In Groups and analysis, volume 354 of London Math. Soc. Lecture Note
Ser., pages 164-173. Cambridge Univ. Press, Cambridge, 2008.

[22] Frangois Treves. Topological vector spaces, distributions and kernels. Academic Press, New York-London, 1967.

[23] Gunther Uhlmann. Travel time tomography. volume 38, pages 711-722. 2001. Mathematics in the new millennium (Seoul,
2000).

* CENTRE FOR APPLICABLE MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, INDIA.
E-MAIL: agrawald@tifrbng.res.in

8 CENTRE FOR APPLICABLE MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, INDIA.
E-MAIL: vkrishnan@tifrbng.res.in

T DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF JYVASKYLA, FINLAND.
E-MAIL: suman.k.sahoo@jyu.fi



	1. Introduction
	2. Preliminaries and statements of the main results
	2.1. Definitions of some operators
	2.2. Ray, momentum and transverse ray transforms
	2.3. Normal operators

	3. ucp for the ray transform
	4. ucp for momentum ray transforms
	5. ucp for transverse ray transform
	References

