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Abstract

This paper considers the non-linear inverse problem of reconstructing an electric con-
ductivity distribution from the interior power density in a bounded domain. Applications
include the novel tomographic method known as acousto-electric tomography, in which the
measurement setup in Electrical Impedance Tomography is modulated by ultrasonic waves
thus giving rise to a method potentially having both high contrast and high resolution. We
formulate the inverse problem as a regularized non-linear optimization problem, show the
existence of a minimizer, and derive optimality conditions. We propose a non-linear conju-
gate gradient scheme for finding a minimizer based on the optimality conditions. All our
numerical experiments are done in two-dimensions. The experiments reveal new insight into
the non-linear effects in the reconstruction. One of the interesting features we observe is that,
depending on the choice of regularization, there is a trade-off between high resolution and
high contrast in the reconstructed images. Our proposed non-linear optimization framework
can be generalized to other hybrid imaging modalities.

1 Introduction

Hybrid tomography refers to a combination of two or more existing imaging modalities. Several
modalities such as X-ray Computed Tomography (CT), Ultrasound Imaging (UI), Magnetic Res-
onance Imaging (MRI) offer high resolution but have poor contrast in some situations. Other
imaging modalities such as Electrical Impedance Tomography (EIT) and Optical Tomography
(OT) have the reverse properties, that is, they offer high contrast in various applications, but
suffer from poor resolution. By combining two modalities with different nature, one can hope to
achieve a tomographic modality with both high-contrast with high-resolution. A partial list of
modalities for hybrid tomography includes Impedance-acoustic Tomography (IAT) [14] (coupling
of EIT and UI), Acousto-electric tomography (AET) [4, [34] (coupling of EIT and UI), Photoa-
coustic tomography (PAT) [22] (coupling of OT and UI), and Magnetic resonance EIT (MREIT)
[31), 19%, 20] (coupling of MRI and EIT). For an overview of the several hybrid imaging modalities
for conductivity imaging we refer the reader to [33].

In this paper we focus on a computational approach to the hybrid imaging problem relevant
to AET. Mathematically the problem is as follows: Let €2 C R"™ be an open, bounded, convex
set with smooth boundary. The interior conductivity distribution is given by a scalar function
bounded above and below by positive constants. The application of a voltage potential f to the



boundary 0€) generates an interior voltage potential u that is characterized by the elliptic PDE

—V - (oVu) =01in Q,

U|aQ:f-

(1)

In EIT one measures the normal current flux through the boundary given by oVu - v, with v
denoting the outward unit normal on 0f). Ultrasound waves generated in the exterior of {2 can
be used to perturb the interior conductivity due to the acousto-electric effect, and by measuring
the resulting perturbed boundary current flux one can, in principle, compute the interior power
density [4, [7]

H(o) = o|Vul|* in Q.

The inverse problem in AET is to uniquely determine and reconstruct the conductivity ¢ from
several power densities
Hi(0) = o|Vuy,|?, for 1 <i<m, (2)

where uy, is the unique solution to with boundary potential f;. As one can easily see, the
problem is a non-linear inverse problem.

For the two dimensional (n = 2) problem uniqueness is known [I3] for any three (m = 3)
boundary conditions fi, fo and f3 = f; + fo provided that the interior gradient fields satisfy

det [Vul, V’LLQ} >C > 0. (3)

This conditions state that uy, us has no critical points and that Vu; and Vus are nowhere collinear.
This condition is satisfied for instance for f; = z1, fo = x9 written in Cartesian coordinates
x = (x1,x2), but in fact any two boundary conditions fi, fo that are almost two-to-one can be
taken together with f3 [3]. In dimensions n > 3 the same question is a much more delicate issue
[2, 12].

The non-linear inverse problem has been analyzed mainly from a theoretical point of view,
see [0, 13, 9, 26] for a partial list of works in this direction. One approach for studying the non-
linear problem is to consider the linearized problem. This has been analyzed both theoretically
and numerically, see for example, [23, 24, [8, 27, 11], 16, 21, 17, 25]. It can be shown that the
linearized problem in R? is (microlocally) solvable in case of only two boundary conditions [§].
However, if the interior gradient fields Vu,, Vuy are somewhere orthogonal in the interior, then
local instabilities occur and the inversion allows propagation of singularities [I0]. Consequently,
the particular choice of boundary conditions turns out to be crucial.

In our work, we consider a fully non-linear approach to the optimization problem. While
there are several works, most notably [4, [13], that have considered non-linear approaches to the
reconstruction problem, to the best of our knowledge, ours is the first work that explicitly considers
a regularized bilinear least squares optimization framework in the context of AET. The main
novelty of the paper is that we provide a non-linear computational framework that has the potential
for reconstructing conductivities with better contrast as well as resolution. In this context, a
computational approach using edge-enhancing techniques for AET been done recently in 30, [1].

We will, as in [I1], assume that o € H*(Q2) with s > % an integer. Then H*(€2) is a Banach
algebra and ¢ € C(Q). This is a rather strong regularity assumption that allows our theoretical
analysis below, but most likely the results can be extended to less regular conductivities. We take
two boundary conditions m = 2 such that is satisfied. For the two dimensional problem we

2



conjecture that for such two well-chosen boundary conditions the non-linear problem is uniquely
solvable, however, we will not attempt to prove this. Instead we take a computational approach
to the fully non-linear problem. We cast the inverse problem as a bilinear optimization problem,
show existence of a minimizer and develop a non-linear conjugate gradient (NLCG) optimization
approach for the reconstruction.

The outline of the paper is as follows: In Section [2] we formulate the optimization problem, show
existence of solutions and derive optimality conditions. In Section [3| we discretize the optimality
system and outline the NLCG approach. In Section {4} we describe the numerical implementation
and carry out several computational experiments. We conclude in Section [5]

2 The optimization problem and its minimizer

We consider an optimization-based approach for reconstructing o given Hi(o), Hs(o). For o €
H#(Q2), the power density function H (o) also belongs to H*(2) [11], and thus it makes sense to
consider the following cost functional:

o
2

lo — oy

1 1
(o, u,u2) = Sllo|Vunl* = Hyll7z o) + SllolVual* = Hyll7z o) + ey (4)

In the above equation, u; and wus satisfy with boundary data f; and fy, respectively, and
o, € H*(Q) is a chosen background conductivity. The quantities H?, HS € L?(Q2) denote the
power density functionals possibly corrupted with noise. We will reconstruct ¢ in the following
admissible set

21(Q2) :={o € H*(Q) such that 0 < 0, < o(x) < g, for all z € Q},
(here o; and o, are given positive constants) by considering the minimization problem:

min J(o, uq, uz), )
“ P
such that Ly, (u;,0) =0, i =1,2.

In the rest of the paper, we consider s = [§] + 1, where |-] denotes the greatest integer func-
tion. The equality L£¢(u,0) = 0 is a short-hand notation for (I). In this section, we discuss the
existence of solutions to the minimization problem and state the optimality system for the
characterization of a minimizer.

2.1 Existence of a minimizer

Our analysis of the minimization problem begins with the discussion of the existence of solution

of (1) which is proved in [32].
Proposition 2.1. Let o € HZ, and f € H*/2(0Q). Then (1)) has a unique solution u € H*T(Q).

We will denote this unique solution by u(c). Next we consider the Fréchet differentiability of
the mapping u(o) which is proved in [I1].

Lemma 2.2. The map u(o) defined by is Fréchet differentiable as a mapping from H*(2) to
HsH(Q).



Using Lemma [2.2] we introduce the reduced cost functional
J(0) = J(o,u(0), us(0)), (5)

where u;(0), i = 1,2 denotes the unique solution of given ¢ and f;, 1 =1,2.
We next state some properties of the reduced functional J which can be proved using the
arguments in [I1].

Proposition 2.3. The reduced functional j, given in (@, is weakly lower semi-continuous (w.l.s.c.),
non-negative and Fréchet differentiable as a function of o.

We are now ready to show the existence of a minimizer of the optimization problem using
the reduced functional J. In the statement of the theorem below, we denote H3(€2) as the closed
convex subset of H*(Q2) with boundary trace f.

Theorem 2.4. Let fi, fo € H*tY2(0Q). Then there exists a triplet (o*, ui,uy) € H(Q) x
H]f;rl(Q) X H;:I(Q) such that uf, i = 1,2 are solutions to Lg,(u;,0) = 0, i = 1,2 and o*

minimizes J in HZ,(S).

Proof. We have that the boundedness from below of J guarantees the existence of a minimizing
sequence {o™} € H:,(Q2) and since J is coercive, this sequence is bounded. Therefore it contains
a weakly convergent subsequence {o™} in H? (2) such that o™ — o* (say). Since H?,(2) is
weakly closed, we have that o* € HZ;(€2). Since {¢™} is a minimizing sequence for j\, we obtain
the sequence (uy",ug"), where u;" = u;(¢™), which is bounded in Hj{“l(Q) x H ;2*1(9) This
implies that the sequence converges weakly to (say) (uf,u3) € H3 () x HiFH(6Q).

We next show that the sequence (o*,uj,u}) is a weak solution of (I). First note that the
triplet (o™, uy™, uy") is a weak solution of (1)) for all m; € N, that is (6™ Vu;", Vv) 2y = 0 for
any v € H}(€Q). Now, since H*() is compactly embedded in L*(£2), we have that ¢™ and Vu "
converges strongly to o* and u} respectively in L*(£2). Consequently o™ Vu" converges strongly
to o*Vu} in L*(Q). Hence 0 = (0™ Vu™, V) 20) = (0*Vu}, V) 12(q all for v € Hj(2) showing
that (o, uj, u}) is the unique solution of ().

Now by w.l.s.c. of J, we have

~ -~

j\(a*) <liminf J(¢™) = inf J(o).

my—oco GEH?, ()

Thus, ¢* minimizes the reduced functional J and this proves the existence of a minimizer of the
optimization problem . O

2.2 The reduced functional and optimality conditions

In this section, we state the first order necessary optimality conditions for the minimizer of .
Correspondingly, a local minimum o* € HZ,(2) of J is characterized by the first-order necessary
optimality conditions given by

J(0%),5 — o > 0, for all 5 € H® (9
<VJ(J),O 0>L2(Q)_0, or all o0 € H}4(Q),



where V.J(0*) denotes the L%(Q) gradient and in the inner product above, we interpret V.J(c*)
as the Riesz representative of the Frechét derivative of J in L? evaluated at o*. It is well known
(see for instance [29]) that using the Lagrange functional,

L(O’, ul,UQ,Ul,’UQ) = J(O’, Ul,UQ) + <O'VU1, V’U1>L2(Q) + <UVU2,VU2>L2(Q)7

in the framework of the adjoint method, the condition <Vj(0*), g — U*> ‘) > 0, results in the
L2(Q
following optimality system, consisting of the forward and adjoint equations and a variational

inequality. We have

—V:(oVu;) =0in uiloq = fi, (6)
— V- (0Vuv) =2V ( [U|Vu1| — H?|Vuy) in Q,  wvy|aq =0, (7)
— V- (oVuy) =0in Usloq = fa, (8)
— V- (oVuvy) =2V - (U[U|Vu2|2 — HY|Vuy) in Q,  vy]aq =0, (9)
<<a|w1|2 — H])|Vur[* + (0| Vo = H3)| Vo *+
FAF (o — — > 1
az (0 — op) + Vug - Vo + Vug - Vg, & O’>L2(Q) >0, (10)

for all o € HZ, ().

3 Discretization of the optimality system

3.1 Numerical discretization of the forward and adjoint problems

In this section, we discuss the numerical approximation to the forward and adjoint elliptic equa-
tions in @f@ using the finite element method. We describe the discretization schemes for solving
([6)-(7). The same schemes would be used for (8))-(9). We first note that for a two-dimensional or
three-dimensional setup s = |%]+1 = 2, i.e. ¢ € H*(Q). This implies that the regularization term

in (4) is %Ha - Ub”%IQ(Q)' Consequently, the left hand side of involves a fourth order PDE and

is computationally very expensive to solve. Therefore, in the numerical simulations below, we use
lower order regularization terms to determine the optimality system and use the NLCG method
with the corresponding reduced gradient. More specifically, we use L? and H' regularization terms
(corresponding to s = 0 and s = 1 respectively). The corresponding reduced gradients used in
the NLCG method are the L? and the H' gradients. We emphasize that though the optimal so-
lution ¢* obtained through this procedure is less regular, the method is computationally efficient.
Furthermore, using the H' gradient, we have a good approximation of the desired o € H?((2).

The weak form representation of () is as follows: Find u € H'() with boundary trace f such
that

/ oVu - Vi =0 (11)
Q

for all w € HJ (). Let us define the space of continuous functions which are piecewise polynomials
of degree k in a triangle element K belonging to a mesh 75, as follows

WiL(Q) = {un € C°(Q) : un|k € Py for all K € 7.} N {uy, = f on 9} (12)
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We also define the bilinear form

A(u,u) = / oVu - V. (13)
Q
Then the discrete scheme for @ is given as follows: Find w, € W]’f ,(€2), such that
A(uh, ﬁh) = O, (14)
for all w, € W§,(Q), where
Wéﬁh ={up, € C%Q) tup|x €P, VK € 7} N {uy, = 0 on 0Q}. (15)

For the adjoint equation (7)), we define the linear form
L(@) = —2/ (olo|Vunl2 — HIVup) - V5, (16)
Q

where Vuy, is the derivative of the solution u; to . Then the discrete scheme for is given
as follows: Find v, € W}, such that

A(vn, Un) = L(0p), (17)
for all T, € W, defined in (13)), and A(u,v) is the bilinear form defined in .

3.2 The reduced H' gradient

For the case s = 1, in the optimality system , the following reduced L? gradient components
appear

VJ(o) = [ (o|Vui|? = HY) [Vur|* + (0| Vue|> — HY) [Vus|[*+
(18)
O./(U — Jb) — OéA(U — Jb) + Vul . V’Ul + VUQ . V’U2:| y

where A is the distributional Laplacian. Let us now discuss the unconstrained case. In this
case, optimality requires V.J(o) = 0. Because of the H! cost for o — 03, we have a setting that
allows to include boundary conditions on the conductivity o. By considering the derivation of
the optimality system above using the Lagrange formulation, we find that a convenient choice is
to require o — g, = 0 on 02 as the conductivity distribution near the boundary is constant and
equals to the background distribution oy.

We wish to apply a gradient-based optimization scheme where the residual of is used
such that o € H'(Q). For this purpose, we cannot use this residual directly for updating the
conductivity, since it is not in H'(2). Therefore, it is necessary to determine the reduced H'
gradient. This is done based on the following fact

<vj(U)H1(Q)’SO>H1(Q) B <Vj<0)’ S0>L2(Q)’

where ¢ € H}(2). Using the definition of the H' inner product and integrating by parts, we have
that the H! gradient is obtained by solving the following boundary value problem

—AVI(0)m@) + VI(0) g = V(o) in Q (19)
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where — is defined in the weak sense. The solution to this problem provides the appropriate
gradient to be used in a gradient update of the conductivity that includes projection to ensure
o€ HL(D).

3.3 A projected NLCG optimization scheme

We solve the optimization problem by implementation of a projected non-linear conjugate
scheme (NLCG); see [29] in L? and H' spaces. Such a scheme is an extension of the conjugate
gradient method to constrained non-linear optimization problems. In the following discussing
we denote Xj, as both the discrete approximations to the L*(Q2) and H'(Q) spaces. We also
denote the corresponding discrete inner product and norm as (-,-)x, and || - ||x,, respectively,
where| - [|%, = (-,-)x, - For the definition of the discrete L}, H, inner product we refer to [I8].
To describe this iterative method, we start with an initial guess og for the conductivity and the
corresponding search direction:

~

dy = —g0 == —(VJ(00))x,,

o~

where V.J(0g)x, represents the discrete L? or H' gradient computed through a finite element
discretization of or 7, respectively. The search directions are obtained recursively as

dit1 = —Grt1 + Brdy, (21)
where g, = Vj(ak)xh, k =0,1,... and the parameter 3 is chosen according to the formula of
Hager-Zhang [15] given by

1 [l >T
HG h
= —2d , 22

where yr = gr1 — G-
We update the value of the conductivity o with a steepest descent scheme given as follows

Okt1 = Ok + ap dy, (23)

where k is a index of the iteration step and aj > 0 is a step length obtained using a line search
algorithm as in [5]. For this line search, we use the following Armijo condition of sufficient decrease
of J

-~ ~ ~

J(O’k + akdk) S J(uk) —+ 5ak(VJ(ak), dk;>Xh7 (24)

where 0 < 0 < 1/2.
Notice that this gradient procedure should be combined with a projection step onto H?;.
Therefore, we consider the following

Ok+1 = Pp (o + ap di], (25)

where
Py [o] = max{o;, min{o,,0}}.

The projected NLCG scheme can be summarized as follows:
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1. Input: initial approximation, o¢. Evaluate dy = —VJ(0y)x,, index k = 0, maximum k =
kmax, tolerance =tol.

2. While (k < kpaz) do

(a) Set o1 = Py [ox + oy di], where ay, is obtained using a line-search algorithm.

)
(b) Compute gi1 = VJ(0rt1)x,-
(c) Compute B¢ using (22).
(d) Set dpy1 = —gry1 + B dy.
(e) If ||og+1 — ok||x, < tol., terminate.
(f) Set k= k + 1.

3. End while.

4 Numerical experiments

In this section we discuss the numerical implementation of the NLCG scheme for the minimization
problem (P). The domain of definition is the unit circle centered at (0,0). We choose the value
of the background conductivity as o, = 1.0 and the lower and upper values o, = 0.01, o, = 4.0.
The initial guess for o in the NLCG algorithm is chosen to be 1. The computations are done in
FENICS with P, elements for the electric potential v and P, for the conductivity function o in
case s = 0. In the case s = 1, we note that the optimality condition contains a Laplacian
of o and thus we use Py elements for 0. The average mesh size for the optimization algorithm is
0.01. The plot of the mesh is shown in Figure [l We choose the regularization parameter o = 0.1
for all the numerical experiments.

=
0.0

(a) Mesh (b) Zoomed view of the mesh

Figure 1: The mesh for the experiments



In our numerical simulations, we consider the following sets of boundary conditions:

BCL: fi=a, fo= 1Y

\/§ )
BC2: fi=ux, fo=uy, (BC)

T+y
BC3: fi=w, fa=y, f3 7
With either of these choice of boundary conditions, u; and uy have no critical points and Vuy, Vus
are non-parallel in Q [3]. This choice of boundary conditions is motivated by the linear reconstruc-
tion algorithms, where BC1 and BC2 lead to different qualitative behavior in the reconstructions
[10].

Unless otherwise explicitly stated, the boundary condition in the numerical experiments is
BC1; see . To generate the data H in ([2)), we choose a ¢ and solve @ on a finer mesh with
mesh size h = 0.005. We then compute the gradients of u using a finite element discretization and
thus compute the internal data H. Finally, we project the data onto the computational mesh for
our NLCG algorithm.

In general, we expect a better resolution of the reconstructions with L? regularization than
with H'! regularization. Recall that at each iterative step, the update for o is found by solving .
In the case of H' regularization, since involves an additional Laplacian term, the obtained
update for o is more regular compared to that with the L? regularization set up. Due to this,
the artifacts with H' regularization are less pronounced leading to reconstructions with better
contrast. For the same reason, the edges are enhanced using L? regularization resulting in images
with better resolution. Also note that more artifacts are present in images with L? regularization
compared to that with H' regularization.

Test Case I: In the first test case, we consider a phantom represented by a disk and the
conductivity o is defined as follows:

Let 7 = /(z — 0.2)2 + (y — 0.2)2. Define

() = {2.0, r<0.3, (26)

1.0, r > 0.3.

The plots of the actual and reconstructed ¢ with the boundary condition BC1 given in
and with various values of L? and H! regularization parameter o are shown in Figure We
observe that as a increases, the contrast in both the cases decreases. Regardless of the value of
the regularization parameter «, we observe better resolution with L? regularization and better
contrast with H'! regularization. We also compare our algorithm with the paramterix method of
[21] (shown in Figure , and while there is a slightly better resolution of the edges compared
to our algorithm, there is a substantial loss of contrast in the parametrix method.

Test Case II: In the second test case, we consider the heart and lung phantom for o as described
in [28]. It has a background value of 1.0 that is perturbed in two ellipses (representing the lungs)
where the value is 0.5 and in a circular region (representing the heart) where the value is 2.0.

In order to demonstrate the robustness of our optimization framework, we add 10% and 25%
white Gaussian noise in the exact interior data H. The noise is added to H in the following way:
Let 6 denote the noise level. Then

H°=H+6-H-N, (27)



where H° is the 2D-matrix of noisy data, H is the 2D-matrix of data without noise and N is
the 2D-matrix of values each obtained from a standard normal distribution. In , the product
refers to entrywise multiplication.

The reconstructions of ¢ with L? and H' regularizations are shown in Figures [3| and ,
respectively. The simulations show that our algorithm is very robust in the presence of noisy data.
Furthermore, better contrast is obtained with the H' regularization term in comparison to the L2
case.

Test Case III: In the third test case, we consider a phantom where the conductivity o is
supported inside a rotated rectangle

e v z Yy
o(z) = 2.0, if NIV 0.2| < 0.2 and 5B 0.2| <04, (25)
1.0, elsewhere.

The reconstructions of ¢ with L? and H! regularizations and with BC1, BC2 and BC3 given in
are shown in Figure [4

Our goal with this simulation is to show the effect of boundary conditions on the reconstructed
images. As we can see, the reconstructions with boundary conditions BC1 and BC3 are better
compared to the ones with BC2, in the sense that there are fewer artifacts with BC1 and BC3. We
note that a similar behavior was previously observed and studied theoretically and numerically for
the linearized reconstruction method [16, 10] using microlocal analysis. The characterization of
artefacts appearing in reconstructions from the fully non-linear algorithm is, in our opinion, non-
trivial, and beyond the scope of the current work. Note further that BC1 with only two boundary
conditions yields reconstructions similar in quality to the reconstructions from BC3 with three
boundary conditions. This makes us conjecture that the non-linear reconstruction problem in
AET is solvable with only two properly chosen boundary conditions.

Test Case IV: In the fourth test case, we consider a combination of phantoms supported in a
square S, = {(z,y) € R*: —=0.1 < z < —0.1,—-0.1 < y < —0.1} with o = 3.0, 2 disks centered
at (—0.1,0.5) with radius 0.2 and ¢ = 2.0 and at (0.1,0.5) with radius 0.2 and ¢ = 1.0 and a
bean-shaped annulus with value of ¢ = 2.0 in the annular region and ¢ = 0.5 in the hole. The
plots of the reconstructed o for s =0, o = 0.1 and s = 1, o« = 0.1 with BCI as given in (BC)
and with the parametrix method are shown in Figure [5

Our numerical procedure performs well for a phantom with an inclusion as well as with a self-
intersection as shown in Figure 5] Note that the inclusion is clearly visible. Furthermore for the
two disks with intersections, the intersecting region is clearly distinguishable as well. We compare
with the parametrix method of [21] (see Figure [5(b)), and similar to what was observed in the
case of Figure [2| there is a substantial loss of contrast with the parametrix method.

5 Conclusion

In this work, we considered a non-linear computational approach to acousto-electric tomography
involving the reconstruction of the electric conductivity of a medium from interior power density

10



distribution. We formulated the inverse problem as a non-linear optimization problem, showed the
existence of a minimizer and developed a non-linear conjugate gradient (NLCG) scheme for the
reconstruction of the conductivity of the medium from interior power density functionals. We pre-
sented several numerical simulations showing the robustness of the NLCG algorithm. We observed
that the H' regularization, in general, reconstructed images with better contrast compared to the
L? regularization which reconstructed images with better resolution. The proposed non-linear
framework is versatile and can be applied to other hybrid imaging modalities as well.

Acknowledgements

Knudsen would like to acknowledge support from the Danish Council for Independent Research
— Natural Sciences. Krishnan was supported in part by US NSF grant DMS 1616564. Addition-
ally, he and Roy benefited from the support of Airbus Corporate Foundation Chair grant titled
“Mathematics of Complex Systems” established at TIFR CAM and TIFR ICTS, Bangalore, India.

References

[1] Bolaji Adesokan, Bangti Jin, Bjgrn Christian Skov Jensen, and Kim Knudsen. Acousto-
electric tomography with total variation regularization. Submitted, 2018.

[2] Giovanni S. Alberti, Guillaume Bal, and Michele Di Cristo. Critical points for elliptic equa-
tions with prescribed boundary conditions. Arch. Ration. Mech. Anal., 226(1):117-141, 2017.

[3] Giovanni Alessandrini and Vincenzo Nesi. Univalent o-harmonic mappings. Arch. Ration.
Mech. Anal., 158(2):155-171, 2001.

[4] Habib Ammari, Eric Bonnetier, Yves Capdeboscq, M. Tanter, and Mathias Fink. Electrical
impedance tomography by elastic deformation. STAM J. Appl. Math., 68(6):1557-1573, 2008.

[5] Mario Annunziato and Alfio Borzi. A Fokker—Planck control framework for multidimensional
stochastic processes. Journal of Computational and Applied Mathematics, 237(1):487 — 507,
2013.

[6] Guillaume Bal. Cauchy problem for ultrasound-modulated eit. Anal. PDE, 6(4):751-775,
2013.

[7] Guillaume Bal. Hybrid inverse problems and internal functionals. In Inverse problems and ap-
plications: inside out. II, volume 60 of Math. Sci. Res. Inst. Publ., pages 325-368. Cambridge
Univ. Press, Cambridge, 2013.

[8] Guillaume Bal. Hybrid inverse problems and redundant systems of partial differential equa-
tions. In Inverse problems and applications, volume 615 of Contemp. Math., pages 15-47.

Amer. Math. Soc., Providence, RI, 2014.

[9] Guillaume Bal, Eric Bonnetier, Frangois Monard, and Faouzi Triki. Inverse diffusion from
knowledge of power densities. Inverse Probl. Imaging, 7(2):353-375, 2013.

11



[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

Guillaume Bal, Kristoffer Hoffmann, and Kim Knudsen. Propagation of singularities for
linearised hybrid data impedance tomography. Inverse Problems, 34(2), 2017.

Guillaume Bal, Wolf Naetar, Otmar Scherzer, and John Schotland. The Levenberg-Marquardt
iteration for numerical inversion of the power density operator. J. Inverse Ill-Posed Probl.,
21(2):265-280, 2013.

Yves Capdeboscq. On a counter-example to quantitative Jacobian bounds. J. Ee. polytech.
Math., 2:171-178, 2015.

Yves Capdeboscq, Jérome. Fehrenbach, Frederic de Gournay, and Otared Kavian. Imaging
by modification: numerical reconstruction of local conductivities from corresponding power
density measurements. SIAM J. Imaging Sci., 2(4):1003-1030, 2009.

Bastian Gebauer and Otmar Scherzer. Impedance-acoustic tomography. SIAM J. Appl.
Math., 69(2):565-576, 2008.

William W. Hager and Hongchao Zhang. A new conjugate gradient method with guaranteed
descent and an efficient line search. SIAM Journal on Optimization, 16(1):170-192, 2005.

Kristoffer Hoffmann and Kim Knudsen. Iterative reconstruction methods for hybrid inverse
problems in impedance tomography. Sens. Imaging, 15, 2014.

Simon Hubmer, Kim Knudsen, Changyou Li, and Ekaterina Sherina. Limited angle electrical
impedance tomography with power density data. arXiw:1712.08009, 2018. to appear in Inverse
Problems in Science and Engineering.

Bosko S. Jovanovi¢ and Endre Siili. Analysis of Finite Difference Schemes. Springer Series
in Computational Mathematics, 1 edition, 2014.

S. Kim, O. Kwon, J. K. Seo, and J.-R. Yoon. On a nonlinear partial differential equa-
tion arising in magnetic resonance electrical impedance tomography. SIAM J. Math. Anal.,
34(3):511-526 (electronic), 2002.

Y. J. Kim, O. Kwon, J. K. Seo, and E. J. Woo. Uniqueness and convergence of conduc-
tivity image reconstruction in magnetic resonance electrical impedance tomography. Inverse
Problems, 19(5):1213-1225, 2003.

Peter Kuchment and Leonid Kunyansky. 2D and 3D reconstructions in acousto-electric to-
mography. Inverse Problems, 27(5):055013, 21, 2011.

Peter Kuchment and Leonid Kunyansky. Mathematics of photoacoustic and thermoacoustic
tomography. Handbook of Mathematical Methods in Imaging: Volume 1, Second FEdition,
pages 1117-1167, 2015.

Peter Kuchment and Dustin Steinhauer. Stabilizing inverse problems by internal data. Inverse
Problems, 28(8):084007, 20, 2012.

12



[24]

[25]

[32]

[33]

[34]

Peter Kuchment and Dustin Steinhauer. Stabilizing inverse problems by internal data. II:
non-local internal data and generic linearized uniqueness. Anal. Math. Phys., 5(4):391-425,
2015.

Changyou Li, Mirza Karamehmedovi¢ Ekaterina Sherina, and Kim Knudsen. Levenberg-
Marquardt algorithm for acousto-electric tomography based on the complete electrode model.
In preparation, 2018.

Frangois Monard and Guillaume Bal. Inverse diffusion problems with redundant internal
information. Inverse Probl. Imaging, 6(2):289-313, 2012.

Carlos Montalto and Plamen Stefanov. Stability of coupled-physics inverse problems with
one internal measurement. Inverse Problems, 29(12):125004, 13, 2013.

J. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with Practical Applica-
tions. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2012.

P. Neittaanmaki and D. Tiba. Optimal Control of Nonlinear Parabolic Systems: Theory:
Algorithms and Applications. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor
& Francis, 1994.

Souvik Roy and Alfio Borzi. A new optimization approach to sparse reconstruction of log-
conductivity in acousto-electric tomography. SIAM J. Imaging Sci., 11(2):1759-1784, 2018.

G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Henkelman. Measurement of
nonuniform current density by magnetic resonance. [EEFE Transactions on Medical Imag-
ing, 10(3):362 — 374, 1991.

V. A. Solonnikov. Overdetermined elliptic boundary-value problems. Journal of Soviet Math-
ematics, 1(4):477-512, 1973.

Thomas Widlak and Otmar Scherzer. Hybrid tomography for conductivity imaging. Inverse
Problems, 28(8):084008, 28, 2012.

H. Zhang and L. V. Wang. Acousto-electric tomography. Proc. SPIE, 5320:14514, 2004.

13



20

1 2
08 19
0.5 1.8 06 18
04 17
] 02 16
0.0 15
1 0 15
0.2 14
-0.5—5 -13 04 13
] 0.6 12
-0.8 11
i T -1.0
1o 0.5 0.0 05 1 1
1 0.5 0 05 1
(a) Actual phantom (b) Parametrix method [21]
(Done in Matlab)
2.0 2.0
0.5 1.8 05 1.8
0.0 15 0.0 1.5
-0.5 -13 -0.5 -13
1.0 -10 1.0 -1.0
1.0 -0.5 (X} 05 1o 0.5 0.0 05
(¢) s=0, a=0.1 (d)s=1, a=0.1
20 2.0
0.5 1.8 0.5 - 1.8
(0
|
9 /
0.0 15 0.0 \_ i 15
0.5 13 -0.5- 13
-1 T T -1.0 -1 T U -1.0
-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5

20 20

0.5+ 1.8 0.5 1.8

0.0 1.5 0.0 1.5

-0.5- -13 -0.5 -1.3

1. 1.0 & 1.0
1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5

(g) s=0, a=0.7 (h) s=1, a=0.7

Figure 2: Test Case I: The actual and reconstructed Gaussian phantom for a = 0.1 with boundary
condition BC1 and with the parametrix method.
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(a) Actual phantom

(d) s =0, a=0.1, 10% noise (e) s=1, a=0.1, 10% noise

(f) s=0, a=0.1, 25% noise (g) s=1, a=0.1, 25% noise

Figure 3: Test Case II: The actual and reconstructed heart and lung phantom with L? and H*
regularizations and with noiseless/noisy data.

15



(a) Actual phantom

(b) s =0, o =0.1 with BC1 (¢) s=1, a=0.1 with BC1

(d) s =0, o =0.1 with BC2 (e) s=1, a=0.1 with BC2

(f) s=0, a=0.1 with BC3 (g) s=1, a=0.1 with BC3

Figure 4: Test Case III: The actual and reconstructed rotated rectangle phantom with L? and H*
regularization, and with the boundary conditions BC1, BC2 and BC3.
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Figure 5: Test Case IV: The actual and reconstructed images of a phantom with an inclusion as
well as with self-intersections.
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